a2 United States Patent

Iyer et al.

US009208121B2

US 9,208,121 B2
Dec. 8, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(63)

(60)

(1)

(52)

HIGH PERFORMANCE INTERCONNECT
PHYSICAL LAYER

Applicant: INTEL CORPORATION, Santa Clara,
CA (US)
Inventors: Venkatraman Iyer, Austin, TX (US);
Darren S. Jue, Sunnyvale, CA (US);
Robert G. Blankenship, Tacoma, WA
(US); Fulvio Spagna, San Jose, CA
(US); Debendra Das Sharma, Saratoga,
CA (US); Jeffrey C. Swanson,
Sunnyvale, CA (US)
Assignee: Intel Corporation, Santa Clara, CA
(US)
Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 14/538,937

Filed: Nov. 12, 2014
Prior Publication Data
US 2015/0067208 Al Mar. 5, 2015

Related U.S. Application Data

Continuation of application No. 13/976,937, filed as
application No. PCT/US2013/034188 on Mar. 27,
2013.

Provisional application No. 61/717,091, filed on Oct.
22,2012.

Int. Cl1.

GO6F 13/42 (2006.01)

GO6N 99/00 (2010.01)

U.S. CL

CPC GOG6F 13/4291 (2013.01); GOGF 13/42

(2013.01); GOGF 13/4282 (2013.01); GO6N
99/005 (2013.01)

To Processing Core

Transaction Layer 205

Link Layer 210

gt

i3 N
Fhys. Layer 220

Logical Sub Block 221 |

Electrical Sub-Block 222 |

To External Device

(58) Field of Classification Search
CPC ... GOG6F 12/0835; GOGF 13/00; GOGF 13/42;
GOG6F 13/4282
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,334,047 Bl

7,801,121 B1*
7,802,049 B2 *
8,026,726 B2 *

2/2008 Pillay-Esnault

9/2010 Van Wageningen et al. . 370/386
9/2010 Levy oo, 710/316
9/2011 Suletal.ccooervnnnnnn. 324/543

(Continued)
FOREIGN PATENT DOCUMENTS

EP 0991222
EP 1400066

OTHER PUBLICATIONS

4/2003
10/2008

PCT International Search Report and Written Opinion received for
PCT Patent Application No. PCT/US2013/034188, mailed on Jul. 18,
2013,15 pages.

PCT International Preliminary Report on Patentability in PCT Inter-
national Application Serial No. PCT/US2013/034188 mailed on Apr.
28, 2015.

Primary Examiner — Brian Misiura
(74) Attorney, Agent, or Firm — Patent Capital Group

(57) ABSTRACT

A periodic control window is embedded in a link layer data
stream to be sent over a serial data link, where the control
window is configured to provide physical layer information
including information for use in initiating state transitions on
the data link. The link layer data can be sent during a link
transmitting state of the data link and the control window can
interrupt the sending of flits. In one aspect, the information
includes link width transition data indicating an attempt to
change the number of active lanes on the link.

20 Claims, 15 Drawing Sheets

" Packel Header”™
i Payload 206

US 9,208,121 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS
8,180,007 B2* 5/2012 Igbaletal. 375/355

8,527,677 B1* 9/2013 Richard etal. 710/54
8,751,714 B2* 6/2014 Safranek et al. . 710/105

2011/0138096 Al
2012/0011276 Al
2012/0079156 Al*
2014/0115207 Al*
2014/0153656 Al*

* cited by examiner

6/2011
1/2012
3/2012
4/2014
6/2014

Radulescu et al.
Cherukuri et al.
Safranek et al. 710/305
Iyeretal. ...ccoeoeinns 710/105
Hsuetalcccoeevennn 375/259

U.S. Patent Dec. 8, 2015 Sheet 1 of 15 US 9,208,121 B2

Processor

105

132 775’ Gontroller

Hub
115

Graphics Accelerator
130

System
memory
710

10 Device 125

FIG 1

U.S. Patent Dec. 8, 2015 Sheet 2 of 15 US 9,208,121 B2

Lavered Protocol Stack 200

fo Processing Core
A

Jransaction Layer 205

Link Layer 2710

Packet Header,

Payload 206
. /
FPhysicat Layer 220
Logical Sub Block 221 '
211 206 212
Electrical Sub-Block 222 ‘ R} /'
fo External Device E
2230 217 206 212 | 223

FiG. 2

US 9,208,121 B2

Sheet 3 of 15

Dec. 8, 2015

U.S. Patent

GO
617 Lo
,,,,, e 7] 4 .
A7 -
— — 9IF
974

& 94

oor

90¢ a1 |9uueyg

§1&
doous-opy

g1 rie
UL 48P AY | PoNIasay

cle
314014

08 s119 9391411y

co¢ 4i 18490/9

U.S. Patent

Fig. &

Memory

o T i

HP] Based
Processuor

Dec. 8, 2015

Mamory
st

HP1 Based
Progessor

Weamory
TRas T

HP] Based
Procassor

Memory
TP

Y /\ v

a—HP [

—HP |

at—HE [—

ag—HP |

Sheet 4 of 15

HP1 Based
Processor

= =

HPI Based
Processor

B B

N/t

= =

HPl Bassd HP1 Based
Processor Procassor
—HP]
¥emary Memory

n P

HPI Hased
Procassor

—HP

o T

HPI Based
Processor

A touny

AIOHIBR

RAowoR

P |]

% \H / i
Pj\i

US 9,208,121 B2

/4

5

Memory

u T i

HP{ Rased
Processor

HP1 Based HEIl Rased HP Based HPI Based
Processor Processor Processor Procassor
—HP [~ P | g P[]

Ed

Memory

= s

Memory

= B

Memory

===

Memory

US 9,208,121 B2

Sheet 5 of 15

Dec. 8, 2015

U.S. Patent

q609 48Ae7 (2015 Ay

gplg 4eAe7q yuiry

qggl9 48Ae7 8uiinoy

9 Fi4

or9

S7/4d
569

BGO9 18ABT [BI1SAl

§1/14

qoz9 49427 1090704

o« 059
spex084

q

8019 49he qui7

8glg 1887 Suiinoy

o

Bp79 48A87 0001044

US 9,208,121 B2

Sheet 6 of 15

Dec. 8, 2015

U.S. Patent

| weay |

N

U.S. Patent Dec. 8, 2015 Sheet 7 of 15 US 9,208,121 B2

5305
DETECT
QS 150 7181 T2 1S3 156 ~1KUI
J 810
POLLING/CONFIG/LOOPBACK
SEOS 150 Ts1 Ts2 1S3 gi ~8KUI

815
PARTIAL WIDTH TRARNSMITTING STATE EXIT J
EIECS
EIEDS FTS FIS FTS ETS FTS 5
g 1 2 3 e s e+ s« B 1t

EIECS FT8 FTS LA A S SDS Fisp

FlG. 8

US 9,208,121 B2

Sheet 8 of 15

Dec. 8, 2015

U.S. Patent

A/fgg OFTY
// v
A/#glvﬁ 4 1)

g as1n80]

A o/ 914 A
s i
- ORQY

\;\v
00T
- z%

, 0201
/ 3
oTIT
o107
6 9/
S SHiH
¥ amAaQ
SH s
o016

US 9,208,121 B2

Sheet 9 of 15

Dec. 8, 2015

U.S. Patent

¢l 914

5 44 0ges pzes

y« Mmmmw v« M

24 g1ep
— d
W X w0 X WEX 50S /544 /50313 Xmomm

z auR

21ep Riep
d
A] X 1y X > VA S0S /544 /50313 Xmom_m

T+ U sue

- Smnxm%nxﬁé vmmwa mwmn\mom_m\wa BIER 1 VA 071 XS%
Ui Uy Hi U aue
VA 307

elep eyep
M 1 X 4 XM”:Q Xiiimﬁm e1Ep / SO/ jinu RIED 3

mwﬁ_% @vmhlq mmmwh 8izs

N

Smwh m@mwlq

U.S. Patent

BIB and IFLB 1320

i
Decode 1325

Dec. 8, 2015 Sheet 10 of 15 US 9,208,121 B2
Power Conirol 1360
1301 1302
Arch Reg Arch Reg Arch Reg Arch Reg
1301a 13016 13024 13026

BIB and IFTLB 1321

i
Decode 1326

i

Rename/Allocater 1330 Rename/Allocater 1331
1 [
Scheduler/Execution Scheduler/Execution
Unit(s) 1340 Unit(s) 1341
l l
Reorder/Retirement Reorder/Retirement
Unit 1335 Unit 1336
Lower level D- Lower level D-
Cache and D-TLB 1350 Cache and D-TLB 1351
[}
On-Chip interface 3]0
1300
[305
1376 1377 | System memory 1375

Device 1380

FIG. 13

U.S. Patent Dec. 8, 2015 Sheet 11 of 15 US 9,208,121 B2
14.@.0\
PCle DM DDR DDR
- 1420
Disp PEG || DMI PCle MemoryCntlr 1
bng | LN\ I\ | Bidge | conerence Logic
14714 1416 C T
Cqpp 5 = 1418 1422
11071 System Agent
A 14404
Core \ Last Level 4
N Cache
CBO - cach
- ¢ache
Core Lacsgégeve/ controller
490 and LL$ slices
Last Level
Core Cache
1450\ AL
Last Level
Core \ Cache
N 14308 74400
\ Ring interconnect
, (carries addlr, oiata, ack and
Gen GFX (6T) snoop/invalid traffic)
Media Engine ~_ 1465

FiG. 14

US 9,208,121 B2

Sheet 12 of 15

Dec. 8, 2015

U.S. Patent

SWve-a3

— v —— o — — —

M |
o

zwmm g gl 9/
$3107)
310 | TWOEST
e o e e e
]
“ 55T 804
|
|
5 VIBST
il J
v.5T “ NGBS MZ §
“ Zi o s4
! : auibua
“ e85 &8,% 4 JapJIo J0 g
e oo Y r ____—_— A
0851
$7l > U3 JU0I
5’ |
0261 N pEeT

-

U.S. Patent Dec. 8, 2015 Sheet 13 of 15 US 9,208,121 B2
Pﬁﬁ‘ggﬁ SOR EXECUTION UNIT 1608
CACHE BEGISTER FILE| | | PACKED INSTRUCTION
1604 1608 SET 1609
Y PROCESSOR BUS
1610 @
; MEMORY MEMORY
GRAPHICS] CONTROLLER
VIDEQ oy B 575} | INSTRUCTION
CARD \-—~-~~—[___1 / \[——:-—1/ —
1612
1o 1620
LEGACY /0
DATA CONTROLLER 1640
STORAGE K= L] e :
1624 <L,:‘J> USER 5
— , INFUT o
) | INTERFACE —225 |
WIRELESS 0 N B X
TRANSCEIVER <};‘> CONTROLLER
1626 HLUB <::1'> SERJAL EXPANSION
— PORT 1638
FLASH BIOS = DI
1628 = CONTROLLER 1635
NETWORK
- CONTROLLER

1660

1634

FiG. 16

US 9,208,121 B2

Sheet 14 of 15

Dec. 8, 2015

U.S. Patent

—]l 914
gzIT [g | L-oerr
QY 3009 S350 3SM0W
I9YH0IS VIVa 77T WD | ZzZT| [OMY0aAIY
j | 0571~) _
— ~ .
7744 FI7T 17T
0/ Glany S300030 0/ 390149 g
) _ .
77T wwm, —
J6IT arrr I T el
%61 o6l SOMHdYHD
G lzgrr 35HY g A H3d-HOH
#EIT~J | 77T~ |
0BT |dd| |dd b / dd| |dd| azzr
T mr o] % e e
T _ \ T
AHONIN Jn M AHONIN
H05STI0Hd
H0SS700Hd N

US 9,208,121 B2

Sheet 15 of 15

Dec. 8, 2015

U.S. Patent

c88l
etlid
AL

0881
Sdo

Gi81
LWAPOW
¢

0281
Hoosilg

81 "Old _
e
L JORUCH
G0 1. 18M0
598~ _ysery D9 ppg d
’ ! Y
v v
0881 SFET iz Ge8l
- ABHOAOD A8JQRU0T HAOH %
Jd YSEl WYHas joog Wis
DI8] pauuoisUj
I TisL 6081
Gc8l 2B 27 JUfy 8oBLBI} Shg
e 07T I e
0oPiA waww w%m 808L_[0440Q 8498) 77
8405 81070
@Eﬁ
ao1 73

US 9,208,121 B2

1

HIGH PERFORMANCE INTERCONNECT
PHYSICAL LAYER

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/976,937, filed Jun. 27, 2013, which applica-
tion claims the benefit of PCT International Application
Serial No. PCT/US2013/034188, filed on Mar. 27, 2013 and
entitted HIGH PERFORMANCE INTERCONNECT
PHYSICAL LAYER, which application claims the benefit of
priority to U.S. Provisional Patent Application Ser. No.
61/717,091 filed on Oct. 22, 2012 and entitled METHOD,
APPARATUS, SYSTEM FOR A HIGH PERFORMANCE
INTERCONNECT ARCHITECTURE. The disclosures of
the prior applications are considered part of and are hereby
incorporated by reference in their entirety in the disclosure of
this application.

FIELD

The present disclosure relates in general to the field of
computer development, and more specifically, to software
development involving coordination of mutually-dependent
constrained systems.

BACKGROUND

Advances in semi-conductor processing and logic design
have permitted an increase in the amount of logic that may be
present on integrated circuit devices. As a corollary, computer
system configurations have evolved from a single or multiple
integrated circuits in a system to multiple cores, multiple
hardware threads, and multiple logical processors present on
individual integrated circuits, as well as other interfaces inte-
grated within such processors. A processor or integrated cir-
cuit typically comprises a single physical processor die,
where the processor die may include any number of cores,
hardware threads, logical processors, interfaces, memory,
controller hubs, etc.

As a result of the greater ability to fit more processing
power in smaller packages, smaller computing devices have
increased in popularity. Smartphones, tablets, ultrathin note-
books, and other user equipment have grown exponentially.
However, these smaller devices are reliant on servers both for
data storage and complex processing that exceeds the form
factor. Consequently, the demand in the high-performance
computing market (i.e. server space) has also increased. For
instance, in modern servers, there is typically not only a single
processor with multiple cores, but also multiple physical pro-
cessors (also referred to as multiple sockets) to increase the
computing power. But as the processing power grows along
with the number of devices in a computing system, the com-
munication between sockets and other devices becomes more
critical.

In fact, interconnects have grown from more traditional
multi-drop buses that primarily handled electrical communi-
cations to full blown interconnect architectures that facilitate
fast communication. Unfortunately, as the demand for future
processors to consume at even higher-rates corresponding
demand is placed on the capabilities of existing interconnect
architectures.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a simplified block diagram of a system
including a serial point-to-point interconnect to connect [/O
devices in a computer system in accordance with one embodi-
ment;

20

25

40

45

55

60

2

FIG. 2 illustrates a simplified block diagram of a layered
protocol stack in accordance with one embodiment;

FIG. 3 illustrates an embodiment of a transaction descrip-
tor.

FIG. 4 illustrates an embodiment of a serial point-to-point
link.

FIG. 5 illustrates embodiments of potential High Perfor-
mance Interconnect (HPI) system configurations.

FIG. 6 illustrates an embodiment of a layered protocol
stack associated with HPI.

FIG. 7 illustrates a representation of an example state
machine.

FIG. 8 illustrates example control supersequences.

FIG. 9 illustrates a representation of an example control
window embedded in a data stream.

FIG. 10 illustrates a flow diagram of an example hand-
shake.

FIG. 11 illustrates a flow diagram of an example transition
to a partial width state.

FIG. 12 illustrates an example transition from a partial
width state.

FIG. 13 illustrates an embodiment of a block diagram for a
computing system including a multicore processor.

FIG. 14 illustrates another embodiment of a block diagram
for a computing system including a multicore processor.

FIG. 15 illustrates an embodiment of a block diagram for a
processor.

FIG. 16 illustrates another embodiment of a block diagram
for a computing system including a processor.

FIG. 17 illustrates an embodiment of a block for a comput-
ing system including multiple processor sockets.

FIG. 18 illustrates another embodiment of a block diagram
for a computing system.

Like reference numbers and designations in the various
drawings indicate like elements.

DETAILED DESCRIPTION

In the following description, numerous specific details are
set forth, such as examples of specific types of processors and
system configurations, specific hardware structures, specific
architectural and micro architectural details, specific register
configurations, specific instruction types, specific system
components, specific processor pipeline stages, specific inter-
connect layers, specific packet/transaction configurations,
specific transaction names, specific protocol exchanges, spe-
cific link widths, specific implementations, and operation etc.
in order to provide a thorough understanding of the present
invention. It may be apparent, however, to one skilled in the
art that these specific details need not necessarily be
employed to practice the subject matter of the present disclo-
sure. In other instances, well detailed description of known
components or methods has been avoided, such as specific
and alternative processor architectures, specific logic circuits/
code for described algorithms, specific firmware code, low-
level interconnect operation, specific logic configurations,
specific manufacturing techniques and materials, specific
compiler implementations, specific expression of algorithms
in code, specific power down and gating techniques/logic and
other specific operational details of computer system in order
to avoid unnecessarily obscuring the present disclosure.

Although the following embodiments may be described
with reference to energy conservation, energy efficiency, pro-
cessing efficiency, and so on in specific integrated circuits,
such as in computing platforms or microprocessors, other
embodiments are applicable to other types of integrated cir-
cuits and logic devices. Similar techniques and teachings of

US 9,208,121 B2

3

embodiments described herein may be applied to other types
of circuits or semiconductor devices that may also benefit
from such features. For example, the disclosed embodiments
are not limited to server computer system, desktop computer
systems, laptops, Ultrabooks™, but may be also used in other
devices, such as handheld devices, smartphones, tablets,
other thin notebooks, systems on a chip (SOC) devices, and
embedded applications. Some examples of handheld devices
include cellular phones, Internet protocol devices, digital
cameras, personal digital assistants (PDAs), and handheld
PCs. Here, similar techniques for a high-performance inter-
connect may be applied to increase performance (or evensave
power) in a low power interconnect. Embedded applications
typically include a microcontroller, a digital signal processor
(DSP), a system on a chip, network computers (NetPC), set-
top boxes, network hubs, wide area network (WAN) switches,
or any other system that can perform the functions and opera-
tions taught below. Moreover, the apparatus’, methods, and
systems described herein are not limited to physical comput-
ing devices, but may also relate to software optimizations for
energy conservation and efficiency. As may become readily
apparent in the description below, the embodiments of meth-
ods, apparatus', and systems described herein (whether in
reference to hardware, firmware, software, or a combination
thereof) may be considered vital to a “green technology”
future balanced with performance considerations.

As computing systems are advancing, the components
therein are becoming more complex. The interconnect archi-
tecture to couple and communicate between the components
has also increased in complexity to ensure bandwidth demand
is met for optimal component operation. Furthermore, difter-
ent market segments demand different aspects of interconnect
architectures to suit the respective market. For example, serv-
ers require higher performance, while the mobile ecosystem
is sometimes able to sacrifice overall performance for power
savings. Yet, it is a singular purpose of most fabrics to provide
highest possible performance with maximum power saving.
Further, a variety of different interconnects can potentially
benefit from subject matter described herein.

The Peripheral Component Interconnect (PCI) Express
(PCle) interconnect fabric architecture and QuickPath Inter-
connect (QPI) fabric architecture, among other examples, can
potentially be improved according to one or more principles
described herein, among other examples. For instance, a pri-
mary goal of PCle is to enable components and devices from
different vendors to inter-operate in an open architecture,
spanning multiple market segments; Clients (Desktops and
Mobile), Servers (Standard and Enterprise), and Embedded
and Communication devices. PCI Express is a high perfor-
mance, general purpose [/O interconnect defined for a wide
variety of future computing and communication platforms.
Some PCI attributes, such as its usage model, load-store
architecture, and software interfaces, have been maintained
through its revisions, whereas previous parallel bus imple-
mentations have been replaced by a highly scalable, fully
serial interface. The more recent versions of PCI Express take
advantage of advances in point-to-point interconnects,
Switch-based technology, and packetized protocol to deliver
new levels of performance and features. Power Management,
Quality Of Service (QoS), Hot-Plug/Hot-Swap support, Data
Integrity, and Error Handling are among some of the
advanced features supported by PCI Express. Although the
primary discussion herein is in reference to a new high-
performance interconnect (HPI) architecture, aspects of the
invention described herein may be applied to other intercon-
nect architectures, such as a PCle-compliant architecture, a

5

10

15

20

25

30

35

40

45

50

55

60

65

4

QPI-compliant architecture, a MIPI compliant architecture, a
high-performance architecture, or other known interconnect
architecture.

Referring to FIG. 1, an embodiment of a fabric composed
of point-to-point Links that interconnect a set of components
is illustrated. System 100 includes processor 105 and system
memory 110 coupled to controller hub 115. Processor 105
can include any processing element, such as a microproces-
sor, a host processor, an embedded processor, a co-processor,
or other processor. Processor 105 is coupled to controller hub
115 through front-side bus (FSB) 106. In one embodiment,
FSB 106 is a serial point-to-point interconnect as described
below. In another embodiment, link 106 includes a serial,
differential interconnect architecture that is compliant with
different interconnect standard.

System memory 110 includes any memory device, such as
random access memory (RAM), non-volatile (NV) memory,
or other memory accessible by devices in system 100. System
memory 110 is coupled to controller hub 115 through
memory interface 116. Examples of a memory interface
include a double-data rate (DDR) memory interface, a dual-
channel DDR memory interface, and a dynamic RAM
(DRAM) memory interface.

In one embodiment, controller hub 115 can include a root
hub, root complex, or root controller, such as in a PCle inter-
connection hierarchy. Examples of controller hub 115 include
a chipset, a memory controller hub (MCH), a northbridge, an
interconnect controller hub (ICH) a southbridge, and a root
controller/hub. Often the term chipset refers to two physically
separate controller hubs, e.g., a memory controller hub
(MCH) coupled to an interconnect controller hub (ICH). Note
that current systems often include the MCH integrated with
processor 105, while controller 115 is to communicate with
I/O devices, in a similar manner as described below. In some
embodiments, peer-to-peer routing is optionally supported
through root complex 115.

Here, controller hub 115 is coupled to switch/bridge 120
through serial link 119. Input/output modules 117 and 121,
which may also be referred to as interfaces/ports 117 and 121,
can include/implement a layered protocol stack to provide
communication between controller hub 115 and switch 120.
In one embodiment, multiple devices are capable of being
coupled to switch 120.

Switch/bridge 120 routes packets/messages from device
125 upstream (e.g., over link 123), i.e. up a hierarchy towards
a root complex, to controller hub 115 and downstream, i.e.
down a hierarchy away from a root controller, from processor
105 or system memory 110 to device 125. Switch 120, in one
embodiment, is referred to as a logical assembly of multiple
virtual PCI-to-PCI bridge devices. Device 125 includes any
internal or external device or component to be coupled to an
electronic system, such as an /O device, a Network Interface
Controller (NIC), an add-in card, an audio processor, a net-
work processor, a hard-drive, a storage device, a CD/DVD
ROM, a monitor, a printer, a mouse, a keyboard, a router, a
portable storage device, a Firewire device, a Universal Serial
Bus (USB) device, a scanner, and other input/output devices.
Often in the PCle vernacular, such as device, is referred to as
an endpoint. Although not specifically shown, device 125
may include a bridge (e.g., a PCle to PCI/PCI-X bridge) to
support legacy or other versions of devices or interconnect
fabrics supported by such devices.

Graphics accelerator 130 can also be coupled to controller
hub 115 through serial link 132. In one embodiment, graphics
accelerator 130 is coupled to an MCH, which is coupled to an
ICH. Switch 120, and accordingly 1/O device 125, is then
coupled to the ICH. I/O modules 131 and 118 are also to

US 9,208,121 B2

5

implement a layered protocol stack to communicate between
graphics accelerator 130 and controller hub 115. Similar to
the MCH discussion above, a graphics controller or the
graphics accelerator 130 itself may be integrated in processor
105.

Turning to FIG. 2 an embodiment of a layered protocol
stack is illustrated. Layered protocol stack 200 can includes
any form of a layered communication stack, such as a QPI
stack, a PCle stack, a next generation high performance com-
puting interconnect (HPI) stack, or other layered stack. In one
embodiment, protocol stack 200 can include transaction layer
205, link layer 210, and physical layer 220. An interface, such
as interfaces 117, 118, 121, 122, 126, and 131 in FIG. 1, may
be represented as communication protocol stack 200. Repre-
sentation as a communication protocol stack may also be
referred to as a module or interface implementing/including a
protocol stack.

Packets can be used to communicate information between
components. Packets can be formed in the Transaction Layer
205 and Data Link Layer 210 to carry the information from
the transmitting component to the receiving component. As
the transmitted packets flow through the other layers, they are
extended with additional information used to handle packets
at those layers. At the receiving side the reverse process
occurs and packets get transformed from their Physical Layer
220 representation to the Data Link Layer 210 representation
and finally (for Transaction Layer Packets) to the form that
can be processed by the Transaction Layer 205 of the receiv-
ing device.

In one embodiment, transaction layer 205 can provide an
interface between a device’s processing core and the inter-
connect architecture, such as Data Link Layer 210 and Physi-
cal Layer 220. In this regard, a primary responsibility of the
transaction layer 205 can include the assembly and disassem-
bly of packets (i.e., transaction layer packets, or TLPs). The
translation layer 205 can also manage credit-based flow con-
trol for TLPs. In some implementations, split transactions can
be utilized, i.e., transactions with request and response sepa-
rated by time, allowing a link to carry other traffic while the
target device gathers data for the response, among other
examples.

Credit-based flow control can be used to realize virtual
channels and networks utilizing the interconnect fabric. In
one example, a device can advertise an initial amount of
credits for each of the receive buffers in Transaction Layer
205. An external device at the opposite end of the link, such as
controller hub 115 in FIG. 1, can count the number of credits
consumed by each TLP. A transaction may be transmitted if
the transaction does not exceed a credit limit. Upon receiving
aresponse an amount of credit is restored. One example of an
advantage of such a credit scheme is that the latency of credit
return does not affect performance, provided that the credit
limit is not encountered, among other potential advantages.

In one embodiment, four transaction address spaces can
include a configuration address space, a memory address
space, an input/output address space, and a message address
space. Memory space transactions include one or more of
read requests and write requests to transfer data to/from a
memory-mapped location. In one embodiment, memory
space transactions are capable of using two different address
formats, e.g., a short address format, such as a 32-bit address,
or a long address format, such as 64-bit address. Configura-
tion space transactions can be used to access configuration
space of various devices connected to the interconnect. Trans-
actions to the configuration space can include read requests
and write requests. Message space transactions (or, simply
messages) can also be defined to support in-band communi-

20

35

40

45

50

55

60

65

6

cation between interconnect agents. Therefore, in one
example embodiment, transaction layer 205 can assemble
packet header/payload 206.

Quickly referring to FIG. 3, an example embodiment of a
transaction layer packet descriptor is illustrated. In one
embodiment, transaction descriptor 300 can be a mechanism
for carrying transaction information. In this regard, transac-
tion descriptor 300 supports identification of transactions in a
system. Other potential uses include tracking modifications
of default transaction ordering and association of transaction
with channels. For instance, transaction descriptor 300 can
include global identifier field 302, attributes field 304 and
channel identifier field 306. In the illustrated example, global
identifier field 302 is depicted comprising local transaction
identifier field 308 and source identifier field 310. In one
embodiment, global transaction identifier 302 is unique for all
outstanding requests.

According to one implementation, local transaction iden-
tifier field 308 is a field generated by a requesting agent, and
can be unique for all outstanding requests that require a
completion for that requesting agent. Furthermore, in this
example, source identifier 310 uniquely identifies the
requestor agent within an interconnect hierarchy. Accord-
ingly, together with source ID 310, local transaction identifier
308 field provides global identification of a transaction within
a hierarchy domain.

Attributes field 304 specifies characteristics and relation-
ships of the transaction. In this regard, attributes field 304 is
potentially used to provide additional information that allows
modification of the default handling of transactions. In one
embodiment, attributes field 304 includes priority field 312,
reserved field 314, ordering field 316, and no-snoop field 318.
Here, priority sub-field 312 may be modified by an initiator to
assign a priority to the transaction. Reserved attribute field
314 is left reserved for future, or vendor-defined usage. Pos-
sible usage models using priority or security attributes may be
implemented using the reserved attribute field.

In this example, ordering attribute field 316 is used to
supply optional information conveying the type of ordering
that may modify default ordering rules. According to one
example implementation, an ordering attribute of “0”” denotes
default ordering rules are to apply, wherein an ordering
attribute of “1” denotes relaxed ordering, wherein writes can
pass writes in the same direction, and read completions can
pass writes in the same direction. Snoop attribute field 318 is
utilized to determine if transactions are snooped. As shown,
channel ID Field 306 identifies a channel that a transaction is
associated with.

Returning to the discussion of FIG. 2, a Link layer 210, also
referred to as data link layer 210, can act as an intermediate
stage between transaction layer 205 and the physical layer
220. Inone embodiment, a responsibility of the data link layer
210 is providing a reliable mechanism for exchanging Trans-
action Layer Packets (TLPs) between two components on a
link. One side of the Data Link Layer 210 accepts TLPs
assembled by the Transaction Layer 205, applies packet
sequence identifier 211, i.e. an identification number or
packet number, calculates and applies an error detection code,
i.e. CRC 212, and submits the modified TLPs to the Physical
Layer 220 for transmission across a physical to an external
device.

In one example, physical layer 220 includes logical sub
block 221 and electrical sub-block 222 to physically transmit
a packet to an external device. Here, logical sub-block 221 is
responsible for the “digital” functions of Physical Layer 221.
In this regard, the logical sub-block can include a transmit
section to prepare outgoing information for transmission by

US 9,208,121 B2

7

physical sub-block 222, and a receiver section to identify and
prepare received information before passing it to the Link
Layer 210.

Physical block 222 includes a transmitter and a receiver.
The transmitter is supplied by logical sub-block 221 with
symbols, which the transmitter serializes and transmits onto
to an external device. The receiver is supplied with serialized
symbols from an external device and transforms the received
signals into a bit-stream. The bit-stream is de-serialized and
supplied to logical sub-block 221. In one example embodi-
ment, an 8b/10b transmission code is employed, where ten-
bit symbols are transmitted/received. Here, special symbols
are used to frame a packet with frames 223. In addition, in one
example, the receiver also provides a symbol clock recovered
from the incoming serial stream.

As stated above, although transaction layer 205, link layer
210, and physical layer 220 are discussed in reference to a
specific embodiment of a protocol stack (such as a PCle
protocol stack), a layered protocol stack is not so limited. In
fact, any layered protocol may be included/implemented and
adopt features discussed herein. As an example, a port/inter-
face that is represented as a layered protocol can include: (1)
a first layer to assemble packets, i.e. a transaction layer; a
second layer to sequence packets, i.e. a link layer; and a third
layer to transmit the packets, i.e. a physical layer. As a specific
example, a high performance interconnect layered protocol,
as described herein, is utilized.

Referring next to FIG. 4, an example embodiment of a
serial point to point fabric 400 is illustrated. A serial point-
to-point link can include any transmission path for transmit-
ting serial data. In the embodiment shown, a link can include
two, low-voltage, differentially driven signal pairs: a transmit
pair 406/411 and a receive pair 412/407. Accordingly, device
405 includes transmission logic 406 to transmit data to device
410 and receiving logic 407 to receive data from device 410.
In other words, two transmitting paths, i.e. paths 416 and 417,
and two receiving paths, i.e. paths 418 and 419, are included
in some implementations of a link.

A transmission path refers to any path for transmitting data,
such as a transmission line, a copper line, an optical line, a
wireless communication channel, an infrared communication
link, or other communication path. A connection between two
devices, such as device 405 and device 410, is referred to as a
link, such as link 415. A link may support one lane—each lane
representing a set of differential signal pairs (one pair for
transmission, one pair for reception). To scale bandwidth, a
link may aggregate multiple lanes denoted by xN, where N is
any supported link width, such as 1, 2, 4, 8,12, 16,32, 64, or
wider.

A differential pair can refer to two transmission paths, such
as lines 416 and 417, to transmit differential signals. As an
example, when line 416 toggles from a low voltage level to a
high voltage level, i.e. a rising edge, line 417 drives from a
high logic level to a low logic level, i.e. a falling edge. Dif-
ferential signals potentially demonstrate better electrical
characteristics, such as better signal integrity, i.e. cross-cou-
pling, voltage overshoot/undershoot, ringing, among other
example advantages. This allows for a better timing window,
which enables faster transmission frequencies.

In one embodiment, a new High Performance Interconnect
(HPI) is provided. HPI can include a next-generation cache-
coherent, link-based interconnect. As one example, HPI may
be utilized in high performance computing platforms, such as
workstations or servers, including in systems where PCle or
another interconnect protocol is typically used to connect
processors, accelerators, [/O devices, and the like. However,
HPI is not so limited. Instead, HPI may be utilized in any of

15

20

40

45

8

the systems or platforms described herein. Furthermore, the
individual ideas developed may be applied to other intercon-
nects and platforms, such as PCle, MIPI, QPI, etc.

To support multiple devices, in one example implementa-
tion, HPI can include an Instruction Set Architecture (ISA)
agnostic (i.e. HPI is able to be implemented in multiple dif-
ferent devices). In another scenario, HPI may also be utilized
to connect high performance I/O devices, not just processors
oraccelerators. For example, a high performance PCle device
may be coupled to HPI through an appropriate translation
bridge (i.e. HPI to PCle). Moreover, the HPI links may be
utilized by many HPI based devices, such as processors, in
various ways (e.g. stars, rings, meshes, etc.). FIG. 5 illustrates
example implementations of multiple potential multi-socket
configurations. A two-socket configuration 505, as depicted,
can include two HPI links; however, in other implementa-
tions, one HPI link may be utilized. For larger topologies, any
configuration may be utilized as long as an identifier (ID) is
assignable and there is some form of virtual path, among
other additional or substitute features. As shown, in one
example, a four socket configuration 510 has an HPI link from
each processor to another. But in the eight socket implemen-
tation shown in configuration 515, not every socket is directly
connected to each other through an HPI link. However, if a
virtual path or channel exists between the processors, the
configuration is supported. A range of supported processors
includes 2-32 in a native domain. Higher numbers of proces-
sors may be reached through use of multiple domains or other
interconnects between node controllers, among other
examples.

The HPI architecture includes a definition of a layered
protocol architecture, including in some examples, protocol
layers (coherent, non-coherent, and, optionally, other
memory based protocols), a routing layer, a link layer, and a
physical layer. Furthermore, HPI can further include
enhancements related to power managers (such as power
control units (PCUs)), design for test and debug (DFT), fault
handling, registers, security, among other examples. FIG. 5
illustrates an embodiment of an example HPI layered proto-
col stack. In some implementations, at least some ofthe layers
illustrated in FIG. 5 may be optional. Each layer deals with its
own level of granularity or quantum of information (the pro-
tocol layer 620qa,b with packets 630, link layer 610a,5 with
flits 635, and physical layer 605a,b with phits 640). Note that
a packet, in some embodiments, may include partial flits, a
single flit, or multiple flits based on the implementation.

As a first example, a width of a phit 640 includes a1to 1
mapping of link width to bits (e.g. 20 bit link width includes
a phit of 20 bits, etc.). Flits may have a greater size, such as
184, 192, or 200 bits. Note that if phit 640 is 20 bits wide and
the size of flit 635 is 184 bits then it takes a fractional number
ofphits 640 to transmit one flit 635 (e.g. 9.2 phits at 20 bits to
transmit an 184 bit flit 635 or 9.6 at 20 bits to transmit a 192
bit flit, among other examples). Note that widths of the fun-
damental link at the physical layer may vary. For example, the
number of lanes per direction may include 2, 4, 6, 8, 10, 12,
14, 16, 18, 20, 22, 24, etc. In one embodiment, link layer
610a,b is capable of embedding multiple pieces of different
transactions in a single flit, and one or multiple headers (e.g.
1, 2, 3, 4) may be embedded within the flit. In one example,
HPI splits the headers into corresponding slots to enable
multiple messages in the flit destined for different nodes.

Physical layer 605a,b, in one embodiment, can be respon-
sible for the fast transfer of information on the physical
medium (electrical or optical etc.). The physical link can be
point-to-point between two Link layer entities, such as layer
605a and 6055. The Link layer 610a,5 can abstract the Physi-

US 9,208,121 B2

9

cal layer 6054, b from the upper layers and provides the capa-
bility to reliably transfer data (as well as requests) and man-
age flow control between two directly connected entities. The
Link Layer can also be responsible for virtualizing the physi-
cal channel into multiple virtual channels and message
classes. The Protocol layer 620a,b relies on the Link layer
610a,b to map protocol messages into the appropriate mes-
sage classes and virtual channels before handing them to the
Physical layer 605a,b for transfer across the physical links.
Link layer 610a,b may support multiple messages, such as a
request, snoop, response, writeback, non-coherent data,
among other examples.

The Physical layer 6054,b (or PHY) of HPI can be imple-
mented above the electrical layer (i.e. electrical conductors
connecting two components) and below the link layer 6104, 5,
as illustrated in FIG. 6. The Physical layer and corresponding
logic can reside on each agent and connects the link layers on
two agents (A and B) separated from each other (e.g. on
devices on either side of a link). The local and remote elec-
trical layers are connected by physical media (e.g. wires,
conductors, optical, etc.). The Physical layer 605a,b, in one
embodiment, has two major phases, initialization and opera-
tion. During initialization, the connection is opaque to the
link layer and signaling may involve a combination of timed
states and handshake events. During operation, the connec-
tion is transparent to the link layer and signaling is at a speed,
with all lanes operating together as a single link. During the
operation phase, the Physical layer transports flits from agent
A to agent B and from agent B to agent A. The connection is
also referred to as a link and abstracts some physical aspects
including media, width and speed from the link layers while
exchanging flits and control/status of current configuration
(e.g. width) with the link layer. The initialization phase
includes minor phases e.g. Polling, Configuration. The opera-
tion phase also includes minor phases (e.g. link power man-
agement states).

In one embodiment, Link layer 610a,5 can be implemented
s0 as to provide reliable data transfer between two protocol or
routing entities. The Link layer can abstract Physical layer
605a,b from the Protocol layer 6204, b, and can be responsible
for the flow control between two protocol agents (A, B), and
provide virtual channel services to the Protocol layer (Mes-
sage Classes) and Routing layer (Virtual Networks). The
interface between the Protocol layer 620a,b and the Link
Layer 610a,b can typically be at the packet level. In one
embodiment, the smallest transfer unit at the Link Layer is
referred to as a flit which a specified number of bits, such as
192 bits or some other denomination. The Link Layer 6104, 5
relies on the Physical layer 6054,b to frame the Physical
layer’s 605a,b unit of transfer (phit) into the Link Layer’s
610a,b unit of transfer (flit). In addition, the Link Layer
610a,b may be logically broken into two parts, a sender and a
receiver. A sender/receiver pair on one entity may be con-
nected to a receiver/sender pair on another entity. Flow Con-
trol is often performed on both a flit and a packet basis. Error
detection and correction is also potentially performed on a flit
level basis.

In one embodiment, Routing layer 615a,5 can provide a
flexible and distributed method to route HPI transactions
from a source to a destination. The scheme is flexible since
routing algorithms for multiple topologies may be specified
through programmable routing tables at each router (the pro-
gramming in one embodiment is performed by firmware,
software, or acombination thereof). The routing functionality
may be distributed; the routing may be done through a series
of routing steps, with each routing step being defined through
a lookup of a table at either the source, intermediate, or

10

15

20

25

30

35

40

45

50

55

60

65

10

destination routers. The lookup at a source may be used to
inject a HPI packet into the HPI fabric. The lookup at an
intermediate router may be used to route an HPI packet from
an input port to an output port. The lookup at a destination
port may be used to target the destination HPI protocol agent.
Note that the Routing layer, in some implementations, can be
thin since the routing tables, and, hence the routing algo-
rithms, are not specifically defined by specification. This
allows for flexibility and a variety of usage models, including
flexible platform architectural topologies to be defined by the
system implementation. The Routing layer 615a,5 relies on
the Link layer 610q,b for providing the use of up to three (or
more) virtual networks (VNs)—in one example, two dead-
lock-free VNs, VNO and VN1 with several message classes
defined in each virtual network. A shared adaptive virtual
network (VNA) may be defined in the Link layer, but this
adaptive network may not be exposed directly in routing
concepts, since each message class and virtual network may
have dedicated resources and guaranteed forward progress,
among other features and examples.

In some implementations, HPI can utilize an embedded
clock. A clock signal can be embedded in data transmitted
using the interconnect. With the clock signal embedded in the
data, distinct and dedicated clock lanes can be omitted. This
can be useful, for instance, as it can allow more pins of a
device to be dedicated to data transter, particularly in systems
where space for pins is at a premium.

A link can be established between two agents on either side
of'an interconnect. An agent sending data can be alocal agent
and the agent receiving the data can be a remote agent. State
machines can be employed by both agents to manage various
aspects of the link. In one embodiment, the Physical layer
datapath can transmit flits from the link layer to the electrical
front-end. The control path, in one implementation, includes
a state machine (also referred to as a link training state
machine or the similar). The state machine’s actions and exits
from states may depend on internal signals, timers, external
signals or other information. In fact, some of the states, such
as a few initialization states, may have timers to provide a
timeout value to exit a state. Note that detect, in some embodi-
ments, refers to detecting an event on both legs of a lane; but
not necessarily simultaneously. However, in other embodi-
ments, detect refers to detection of an event by an agent of
reference. Debounce, as one example, refers to sustained
assertion ofa signal. In one embodiment, HPI supports opera-
tion in the event of non-function lanes. Here, lanes may be
dropped at specific states.

States defined in the state machine can include reset states,
initialization states, and operational states, among other cat-
egories and subcategories. In one example, some initializa-
tion states can have a secondary timer which is used to exit the
state on a timeout (essentially an abort due to failure to make
progress in the state). An abort may include updating of
registers, such as status register. Some states can also have
primary timer(s) which are used to time the primary functions
in the state. Other states can be defined such that internal or
external signals (such as handshake protocols) drive transi-
tion from the state to another state, among other examples.

A state machine may also support debug through single
step, freeze on initialization abort and use of testers. Here,
state exits can be postponed/held until the debug software is
ready. In some instance, the exit can be postponed/held until
the secondary timeout. Actions and exits, in one embodiment,
can be based on exchange of training sequences. In one
embodiment, the link state machine is to run in the local agent
clock domain and transition from one state to the next is to

US 9,208,121 B2

11

coincide with a transmitter training sequence boundary. Sta-
tus registers may be utilized to reflect the current state.

FIG. 7 illustrates a representation of at least a portion of a
state machine used by agents in one example implementation
of HPI. It should be appreciated that the states included in the
state table of FIG. 7 include a non-exhaustive listing of pos-
sible states. For instance, some transitions are omitted to
simplify the diagram. Also, some states may be combined,
split, or omitted, while others might be added. Such states can
include:

Event reset state: entered on a warm or cold reset event.
Restores default values. Initialize counters (e.g., sync
counters). May exit to another state, such as another reset
state.

Timed reset state: timed state for in-band reset. May drive
a predefined electrical ordered set (EOS) so remote receivers
are capable of detecting the EOS and entering the timed reset
as well. Receiver has lanes holding electrical settings. May
exit to an agent to calibrate reset state.

Calibrate reset state: calibration without signaling on the
lane (e.g. receiver calibration state) or turning drivers off.
May be a predetermined amount of time in the state based on
a timer. May set an operational speed. May act as a wait state
when a port is not enabled. May include minimum residency
time. Receiver conditioning or staggering off may occur
based on design. May exit to a receiver detect state after a
timeout and/or completion of calibration.

Receiver detect state: detect presence of a receiver on
lane(s). May look for receiver termination (e.g. receiver pull-
down insertion). May exit to calibrate reset state upon a
specified value being set or when another specified value is
not set. May exit to transmitter calibrate state if a receiver is
detected or a timeout is reached.

Transmitter calibrate state: for transmitter calibrations.
May be a timed state allocated for transmitter calibrations.
May include signaling on a lane. May continuously drive an
EOS, such as an EIEOS. May exit to compliance state when
done calibrating or on expiration of a timer. May exit to
transmitter detect state if a counter has expired or a secondary
timeout has occurred.

Transmitter detect state: qualifies valid signaling. May be a
handshake state where an agent completes actions and exits to
a next state based on remote agent signaling. Receiver may
qualify valid signaling from transmitter. Receiver, in one
embodiment, looks for a wake detect, and if debounced on
one or more lanes looks for it on the other lanes. Transmitter
drives a detect signal. May exit to a polling state in response
to debounce being completed for all lanes and/or a timeout or
if debounce on all lanes is not complete and there is a timeout.
Here, one or more monitor lanes may be kept awake to
debounce a wake signal. And if debounced then the other
lanes are potentially debounced. This can enable power sav-
ings in low power states.

Polling state: receiver adapts, initializes drift buffer and
locks on bits/bytes (e.g. identifies symbol boundaries). Lanes
may be deskewed. A remote agent may cause an exit to a next
state (e.g. a Link Width State) in response to an acknowledge
message. Polling can additionally include a training sequence
lock by locking to an EOS and a training sequence header.
Lane to lane skew at remote transmitter may be capped at a
first length for top speed and a second length for slow speed.
Deskew may be performed in a slow mode as well as an
operational mode. Receiver may have a specific maximum to
deskew lane-to-lane skew, such as 8, 16, or 32 intervals of
skew. Receiver actions may include latency fixing. Receiver
actions, in one embodiment, can be completed on successful
deskew of a valid lane map. A successful handshake can be

10

15

20

25

30

35

40

45

50

55

60

65

12

achieved, in one example, when a number of consecutive
training sequence headers are received with acknowledge-
ments and a number of training sequences with an acknowl-
edge are transmitted after the receiver has completed its
actions.

Link width state: agent communicates with the final lane
map to remote transmitter. Receiver receives the information
and decodes. Receiver may record a configured lane map in a
structure after checkpoint of a previous lane map value in a
second structure. Receiver may also respond with an
acknowledge (“ACK”). May initiate an in-band reset. As one
example, first state to initiate in-band reset. In one embodi-
ment, exit to a next state, such as flit configuration state, is
performed in response to the ACK. Further, prior to entering
low power state, a reset signal may also be generated if the
frequency of a wake detect signal occurrence drops below a
specified value (e.g. 1 every number of unit intervals (Us),
such as 4K UI). Receiver may hold current and previous lane
maps. Transmitter may use different groups of lanes based on
training sequences having different values. Lane map may not
modify some status registers in some embodiments.

Flitlock configuration state: entered by a transmitter but the
state is considered exited (i.e. secondary timeout moot) when
both transmitter and receiver have exited to a blocking link
state or other link state. Transmitter exit to a link state, in one
embodiment, includes start of a data sequence (SDS) and
training sequence (TS) boundary after receiving a planetary
alignment signal. Here, receiver exit may be based on receiv-
ing an SDS from a remote transmitter. This state may be a
bridge from agent to link state. Receiver identifies SDS.
Receiver may exit to blocking link state (BLS) (or a control
window) if SDS received after a descrambler is initialized. If
atimeout occurs, exit may be to reset state. Transmitter drives
lanes with a configuration signal. Transmitter exit may be to
reset, BLS, or other states based on conditions or timeouts.

Transmitting Link State: a link state. Flits are sent to a
remote agent. May be entered from a blocking link state and
return to a blocking link state on an event, such as a timeout.
Transmitter transmits flits. Receiver receives flits. May also
exit to a low power link state. In some implementations,
transmitting link state (TLS) can be referred to as the L.O state.

Blocking Link State: a link state. Transmitter and receiver
are operating in a unified manner. May be a timed state during
which the link layer flits are held off while the Physical layer
information is communicated to the remote agent. May exitto
alow power link state (or other link state based on the design).
A blocking link state (BLS), in one embodiment, periodically
occurs. The period is referred to as a BLS interval and may be
timed, as well as may differ between slow speed and opera-
tional speed. Note that the link layer may be periodically
blocked from sending flits so that a Physical layer control
sequence of a length may be sent, such as during a transmit-
ting link state or a partial width transmitting link state. In
some implementations, blocking link state (BLS) can be
referred to as a LO control, or LOc, state.

Partial Width Transmitting Link State: Link state. May
save power by entering a partial width state. In one embodi-
ment asymmetric partial width refers to each direction of a
two direction link having different widths, which may be
supported in some designs. An example of an initiator, such as
a transmitter, sending a partial width indication to enter par-
tial width transmitting link state is shown in the example of
FIG. 9. Here, a partial width indication is sent while trans-
mitting on a link with a first width to transition the link to
transmit at a second, new width. A mismatch may result in a
reset. Note that speeds may not be altered but width may be.

US 9,208,121 B2

13

Therefore, flits are potentially sent at different widths. May be
similar to a transmitting link state logically; yet, since there is
a smaller width, it may take longer to transmit flits. May exit
to other link states, such as a low power link state based on
certain received and sent messages or an exit of the partial
width transmitting link state or a link blocking state based on
other events. In one embodiment, a transmitter port may turn
idle lanes off in a staggered manner to provide better signal
integrity (i.e. noise mitigation) as shown in the timing dia-
gram. Here, non-retry-able flits, Such as Null flits, may be
utilized during periods where the link width is changing. A
corresponding receiver may drop these null flits and turn idle
lanes off in a staggered manner, as well as record the current
and previous lane maps in one or more structures. Note status
and associated status register may remain unaltered. In some
implementations, partial width transmitting link state can be
referred to as a partial L.O, or LOp, state.

Exit Partial Width Transmitting Link State: exit the partial
width state. May or may not use a blocking link state in some
implementations. The transmitter initiates exit, in one
embodiment, by sending partial width exit patterns on the idle
lanes to train and deskew them. As one example, an exit
pattern start with EIEOS, which is detected and debounced to
signal that the lane is ready to start the entry to a full trans-
mitting link state, and may end with SDS or Fast Training
Sequence (FTS) on idle lanes. Any failure during the exit
sequence (receiver actions, such as deskew not completed
prior to timeout) stops flit transfers to the link layer and
asserts a reset, which is handled by resetting the link on the
next blocking link state occurrence. The SDS may also ini-
tialize the scrambler/descrambler on the lanes to appropriate
values.

Low Power Link State: is a lower power state. In one
embodiment, it is lower power than the partial width link
state, since signaling in this embodiment is stopped on all
lanes and in both directions. Transmitters may use a blocking
link state for requesting a low power link state. Here, receiver
may decode the request and respond with an ACK or a NAK;
otherwise reset may be triggered. In some implementations,
low power link state can be referred to as a L1 state.

In one embodiment, two types of pin resets can be sup-
ported; power-on (or “cold”) reset and warm reset. A reset
initiated by software or originating (in the Physical or another
layer) on one agent may be communicated in-band to the
other agent. However, due to usage of an embedded clock, an
in-band reset may be handled by communication to another
agent using an ordered set, such as a specific electrical
ordered set or EIEOS, as introduced above. Such ordered sets
can be implemented as defined 16 Byte codes that may be
represented in hexadecimal format, among other examples.
The ordered set can be sent during initialization and a PHY
control sequence (or “blocking link state) can be sent after
initialization. The block link state can block the link layer
from sending flits. As another example, link layer traffic may
be blocked to send a few NULL flits which may be discarded
at the receiver.

In some implementations of HPI, supersequences can be
defined, each supersequence corresponding to a respective
state or entry/exit to/from the respective state. A superse-
quence can include a repeating sequence of data sets and
symbols. The sequences can repeat, in some instances, until
completion of a state or state transition, or communication of
a corresponding event, among other examples. In some
instances, the repeating sequence of a supersequence can
repeat according to a defined frequency, such as a defined
number of unit intervals (Us). A unit interval (UI) can corre-
spond to the interval of time for transmitting a single biton a

10

15

20

25

30

35

40

45

50

55

60

65

14

lane of a link or system. In some implementations, the repeat-
ing sequence can begin with an electrically ordered set
(EOS). Accordingly, an instance of the EOS can be expected
to repeat in accordance with the predefined frequency. Such
ordered sets can be implemented as defined 16 Byte codes
that may be represented in hexadecimal format, among other
examples. In one example, the EOS of a supersequence can be
anelectrically ordered electrical idle ordered set (or EIEIOS).
In one example, an EIEOS can resemble a low frequency
clock signal (e.g., a predefined number of repeating FFOO or
FFF000 hexadecimal symbols, etc.). A predefined set of data
can follow the EOS, such as a predefined number of training
sequences or other data. Such supersequences can be utilized
in state transitions including link state transitions as well as
initialization, among other examples.

As introduced above, initialization, in one embodiment,
can be done initially at slow speed followed by initialization
at fast speed. Initialization at slow speed uses the default
values for the registers and timers. Software then uses the
slow speed link to setup the registers, timers and electrical
parameters and clears the calibration semaphores to pave the
way for fast speed initialization. As one example, initializa-
tion can consist of such states or tasks as Reset, Detect,
Polling, and Configuration, among potentially others.

In one example, a link layer blocking control sequence (i.e.
a blocking link state (BLS) or LOc state) can include a timed
state during which the link layer flits are held oft while the
PHY information is communicated to the remote agent. Here,
the transmitter and receiver may start a block control
sequence timer. And upon expiration of the timers, the trans-
mitter and receiver can exit the blocking state and may take
other actions, such as exit to reset, exit to a different link state
(or other state), including states that allow for the sending of
flits across the link.

In one embodiment, link training can be provided and
include the sending of one or more of scrambled training
sequences, ordered sets, and control sequences, such as in
connection with a defined supersequence. A training
sequence symbol may include one or more of a header,
reserved portions, a target latency, a pair number, a physical
lane map code reference lanes or a group of lanes, and an
initialization state. In one embodiment, the header can be sent
with a ACK or NAK, among other examples. As an example,
training sequences may be sent as part of supersequences and
may be scrambled.

In one embodiment, ordered sets and control sequences are
not scrambled or staggered and are transmitted identically,
simultaneously and completely on all lanes. A valid reception
of'an ordered set may include checking of at least a portion of
the ordered set (or entire ordered set for partial ordered sets).
Ordered sets may include an electrically ordered set (EOS),
such as an Electrical Idle Ordered Set (EIOS) or an EIEOS. A
supersequence may include a start of a data sequence (SDS)
or a Fast Training Sequence (FTS). Such sets and control
supersequences can be predefined and may have any pattern
or hexadecimal representation, as well as any length. For
example, ordered sets and supersequences may be a length of
8 bytes, 16, bytes, or 32 bytes, etc. FTS, as an example, can
additionally be utilized for fast bit lock during exit of a partial
width transmitting link state. Note that the FTS definition
may be per lane and may utilize a rotated version of the FTS.

Supersequences, in one embodiment, can include the inser-
tion of an EOS, such as an EIEOS, in a training sequence
stream. When signaling starts, lanes, in one implementation,
power-on in a staggered manner. This may result, however, in
initial supersequences being seen truncated at the receiver on
some lanes. Supersequences can be repeated however over

US 9,208,121 B2

15

short intervals (e.g., approximately one-thousand unit inter-
vals (or "1KUTI)). The training supersequences may addition-
ally be used for one or more of deskew, configuration and for
communicating initialization target, lane map, etc. The
EIEOS can be used for one or more of transitioning a lane
from inactive to active state, screening for good lanes, iden-
tifying symbol and TS boundaries, among other examples.

Turning to FIG. 8, representations of example superse-
quences are shown. For instance, an exemplary Detect super-
sequence 805 can be defined. The Detect supersequence 805
can include a repeating sequence of a single EIEOS (or other
EOS) followed by a predefined number of instances of a
particular training sequence (TS). In one example, the EIEOS
can be transmitted, immediately followed by seven repeated
instances of TS. When the last of the seven TSes is sent the
EIEOS can be sent again followed by seven additional
instances of TS, and so on. This sequence can be repeated
according to a particular predefined frequency. In the
example of FIG. 8, the EIEOS can reappear on the lanes
approximately once every one thousand Uls (T"1KUI) fol-
lowed by the remainder of the Detect supersequence 805. A
receiver can monitor lanes for the presence of a repeating
Detect supersequence 805 and upon validating the superse-
quence 805 can conclude that a remote agent is present, has
been added (e.g., hot plugged) on the lanes, has awoke, or is
reinitializing, etc.

In another example, another supersequence 810 can be
defined to indicate a polling, configuration, or loopback con-
dition or state. As with the example Detect supersequence
805, lanes of a link can be monitored by a receiver for such a
Poll/Config/T.oop supersequence 810 to identify a polling
state, configuration state, or loopback state or condition. In
one example, a Poll/Config/l.oop supersequence 810 can
begin with an EIEOS followed by a predefined number of
repeated instances of a TS. For instance, in one example the
EIEOS can be followed by thirty-one (31) instances of TS
with the EIEOS repeating approximately every four thousand
Ul (e.g., "4KUID).

Further, in another example, a partial width transmitting
state (PWTS) exit supersequence 815 can be defined. In one
example, a PWTS exit supersequence can include an initial
EIEOS to repeat to pre-condition lanes in advance of the
sending of the first full sequence in the supersequence. For
instance, the sequence to be repeated in supersequence 815
can begin with an EIEOS (to repeat approximately once every
1KUI). Further, fast training sequences (FTS) can be utilized
in lieu of other training sequences (TS), the FTS configured to
assist in quicker bit lock, byte lock, and deskewing. In some
implementations, an FTS can be unscrambled to further assist
in bringing idle lanes back to active as quickly and non-
disruptively as possible. As with other supersequences pre-
ceding an entry into a link transmitting state, the superse-
quence 815 can be interrupted and ended through the sending
of a start of data sequence (SDS). Further, a partial FTS
(FTSp) can be sent to assist in synchronizing the new lanes to
the active lanes, such as by allowing bits to be subtracted (or
added) to the FTSp, among other examples.

Supersequences, such as Detect supersequence 805 and
Poll/Config/T.oop supersequence 810, etc. can potentially be
sent substantially throughout the initialization or re-initial-
ization of a link. A receiver, upon receiving and detecting a
particular supersequence can, in some instances, respond by
echoing the same supersequence to the transmitter over the
lanes. The receiving and validation of a particular superse-
quence by transmitter and receiver can serve as a handshake
to acknowledge a state or condition communicated through
the supersequence. For instance, such a handshake (e.g., uti-

10

15

20

25

30

35

40

45

50

55

60

65

16

lizing a Detect supersequence 805) can be used to identify
reinitialization of a link. In another example, such a hand-
shake can be utilized to indicate the end of an electrical reset
or low power state, resulting in corresponding lanes being
brought back up, among other examples. The end of the
electrical reset can be identified, for instance, from a hand-
shake between transmitter and receiver each transmitting a
Detect supersequence 805.

In another example, lanes can be monitored for superse-
quences and use the supersequences in connection with the
screening of lanes for detect, wake, state exits and entries,
among other events. The predefined and predictable nature
and form of supersequences can be further used to perform
such initialization tasks as bit lock, byte lock, debouncing,
descrambling, deskewing, adaptation, latency fixing, negoti-
ated delays, and other potential uses. Indeed, lanes can be
substantially continuously monitored for such events to
quicken the ability of the system to react to and process such
conditions. In the case of debouncing, transients can be intro-
duced on lanes as a result of a variety of conditions. For
instance, the addition or powering-on of a device can intro-
duce transients onto the lane. Additionally, voltage irregulari-
ties can be presented on a lane because of poor lane quality or
electrical failure. Such irregularities can be readily detected
on supersequences with predictable values, such as when
values of an EIEOS unexpectedly deviate in connection with
transients or other bit errors.

In one example, a transmitting device can attempt to enter
a particular state. For instance, the transmitting device can
attempt to activate the link and enter an initialization state. In
another example, the transmitting device can attempt to exit a
low power state, such as an L1 state, among other examples.
In some instances of an L1 state, the L1 state can serve as a
power savings, idle, or standby state. Indeed, in some
examples, main power supplies may remain active in the [.1
state. In exiting an [.1 state, a first device can send a superse-
quence associated with transitioning from the L1 state to a
particular other state, such as an L0 transmitting link state
(TLS). The supersequence, as in other examples, can be a
repeating sequence of an EOS followed by a predetermined
number of TSes such that the EOS is repeated at a particular
predefined frequency. In one examples, a Detect superse-
quence can be used to exit the L1 or other low power state. A
receiving device can receive and validate the data, identifying
the supersequence, and the receiving device can complete the
handshake with the transmitting device by sending the super-
sequence back to the transmitting device.

With both the transmitting and receiving devices receiving
the same supersequence, each device can further perform
additional initialization tasks utilizing the supersequences.
For instance, each device can perform debouncing, bit lock,
byte lock, descrambling, and deskewing utilizing the super-
sequences. Additional initialization information can be com-
municated through the headers and payloads of the TSes
included in the supersequences. When the link is initialized, a
start data send (SDS) sequence can be sent, in some cases,
interrupting the supersequence (e.g., sent in the middle of a
TS or EIEOS) and the respective devices on either side of the
link can prepare for the synchronized entry into TLS. In TLS,
or an “LO” state, supersequences can be ended and flits can be
transmitted utilizing the Link layer of the protocol stack.

While in TLS, the Physical layer may still be provided
limited opportunities to perform control tasks. For instance,
bit errors and other errors may be identified on one or more
lanes during an L0 state. In one implementation, a control
state LOc can be provided. The LOc state can be provided as a
periodic window within the TLS to allow Physical layer con-

US 9,208,121 B2

17

trol messages to be sent between streams of flits sent through
the Link layer. For instance, as represented in the example
illustrated in FIG. 9, an LO state can be subdivided into LOc
intervals. Each LOc interval can begin with a LOc state or
window (e.g., 905) in which Physical layer control codes and
other data can be sent. The remainder (e.g., 910) of the LOc
interval can be dedicated to the sending of flits. The length of
the LOc interval and L.Oc state in each interval can be pro-
grammatically defined, for instance by BIOS of one or more
devices or another software-based controller, among other
examples. The L0c state can be exponentially shorter than the
remainder of an LOc interval. For instance, in one example,
the LOc can be 8UI while the remainder of the L.Oc interval is
on the order of 4KUI, among other examples. This can allow
windows in which relatively short, predefined messages can
be sent without substantially disrupting or wasting link data
bandwidth.

LOc state message can communicate a variety of conditions
at the Physical layer level. In one example, one device can
initiate a reset of the link or a lane, for instance, based on bit
errors or other errors in excess of a particular threshold
amount. Such errors can also be communicated in LOc win-
dows (such as preceding [.Oc windows). The L.Oc state can
also be leveraged to realize other in-band signaling, such as
signaling for use in aiding or triggering transitions between
other link states. In one example, L.Oc messages can be uti-
lized to transition a link from an active LO state to a standby
or low power state, such as an L1 state. As shown in the
simplified flow diagram of FIG. 10, a particular L.Oc state can
be used to communicate a .1 entry request (e.g., 1010).
Further flits (e.g., 1020,1030) can be sent while the device (or
agent on the device) waits for an acknowledgement of the
request 1010. The other device on the link can send the
acknowledgement (e.g., 1040). In some examples, the
acknowledgement can also be sent in a [.Oc window. In some
instances, the acknowledgement can be sent in the next LOc
window following receipt/sending of the L1 request 1010.
Timers can be employed to synchronize the LOc intervals at
each device and the requesting device can identify the
acknowledgement 1040 as an acknowledgement of the
request 1010 (e.g., rather than an independent L1 entry
request) based on an identification that the acknowledgement
1040 was sent at the next [Oc window, among other
examples. In some instances, an acknowledgement can be
communicated through an L.Oc code distinct from that used in
the L1 entry request 1010. In other instances, the acknowl-
edgement 1040 can include the echoing of the L1 entry
request code used in request 1010, among other examples.
Further, in alternative examples, a non-acknowledge signal or
NAK can be communicated in the LOc window.

In addition (or as an alternate) to handshaking using [.Oc
codes, supersequences, such as Detect supersequence, can be
sent in connection with resetting and re-initializing the link.
Further handshaking can occur between the devices as the
supersequences sent by a first device and echoed by the sec-
ond, receiving device. Supersequences can be used, as
described above, to assist in the reinitialization of the link
including debouncing, bit lock, byte lock, descrambling, and
deskewing the lanes of the link. Further, the devices can
utilize the timer (e.g., embodying the [.Oc interval) to syn-
chronize entry of the devices and the link into the requested
L1 state. For instance, receipt of the acknowledgement 1040
can indicate to the devices that they are to mutually enter (or
begin entering) the L1 state at the end of the LOc interval
corresponding to the .LOc window in which the acknowledge-
ment was sent, among other examples. For instance, data sent
in an LOc window included in or otherwise associated with

25

40

45

50

18

the acknowledgement 1040 can indicate the time at which the
devices are to enter the L1 state, among other potential
examples. Additional flits (e.g., 1050), in some instances, can
be sent while the devices await the timeout corresponding to
the transition into the L1 state.

In some implementations of HPI, links can be established
upon any number of two or more lanes. Further, a link can be
initialized at a first number of lanes and later transition to a
partial width state such that only a portion of the number of
lanes is used. The partial width state can be designated as a
lower power state, such as a L.Op state. In one example, an L.Oc
state can be used to transition from a L0 state where the first
number of lanes is active to an LOp state where a lesser
number of lanes are to be active. For instance, as shown in the
example of FIG. 11, an link can be active at a first width 1110.
In some instances, the first width can be the full width (e.g., at
L0). In other instances, the link can transition from a first LOp
state utilizing a first number of lanes to another LOp using a
different number (or set) of lanes, among other examples.
During a L.Oc window of the lanes in the first width, a LOp
entry code 1120 can be transmitted. The LOp entry request
1120 can identify what new width should be applied. In some
instances, the new link width can be predetermined and iden-
tified simply from the receipt of the LOp request 1120. Addi-
tionally, the particular lanes to be dropped in the partial width
state can also be specified or otherwise identified or precon-
figured in connection with the LOp request 1120, among other
examples.

Continuing with the example of FIG. 11, flits or other data
(e.g., 1130) can continue to be sent across the full width of
lanes while the link awaits transition into the LOp state. For
instance, a duration t can be specified by synchronized timers
atthe devices connected through the link to synchronize entry
into the LOp state. In one example, the duration t can corre-
spond to a remainder of a L.Oc interval corresponding to the
request 1120. At the end of the interval a portion of the lanes
will remain active while another portion of the lanes are put
into an inactive or idle state. The link will then operate at the
new width (e.g., 1140), at least until an LOp exit request or
other link width transition request is received, among other
examples.

HPI can utilize one or more power control units (PCU) to
assist in timing transitions between an LO state and lower
power states, such as LOp and L 1. Further, HPI can support
master-slave, master-master and other architectures. For
instance, a PCU may be present on or otherwise associated
with only one of the devices connected on a link and the
device having the PCU can be considered the master. Master-
master configurations can berealized, for instance, when both
devices have an associated PCU which can prompt a link state
transition. Some implementations can specify a minimum
stay for a particular low power state, such as LOp or L1, for
example, to attempt minimize transitions between states and
attempt to maximize power savings within an entered low
power state, among other examples.

Exiting from a partial width low power state can be adapted
to take place efficiently and quickly so as to minimize the
impact and interruption of the active lanes. In some imple-
mentations, LOc windows and codes can also be used to
trigger an exit from an LOp or other state to reactive idle lanes.
Turning, for instance, to the examples of FIG. 12, a simplified
flow diagram is shown illustrating an example exit from an
LOp state. In the particular example of FIG. 12, flit data (e.g.,
1205) can be sent when an [.Oc window 1210 is encountered
in which a LO entry (or LOp exit) request is included. Addi-
tional flits 1215 can be sent prior to the point at which the L.Op
exit is to occur. As in other examples, an L.Oc code 1210 can

US 9,208,121 B2

19

include identification of or implicitly identify a time at which
a state transition is to begin/end as well as particular events of
the state transition. Flits (e.g., 1215) can continue to be sent to
maximize data transfer while the devices anticipate to enter
the state transition.

In one example, an EIEOS 1220 (or other data such another
EOS) can be sent on the inactive lanes to begin conditioning
the lanes. In some instances, such inactive lanes (e.g., lanes
“n+1” through “z””) may have been inactive for some time and
waking the lanes can introduce electrical transients and other
instability. Accordingly, the EIEOS 1220, as well as partial
width supersequences sent in connection with the exit from
the LOp state can be used to debounce the lanes as they awake.
Further, in some instances, transients on the waking lanes
(e.g., lanes “n+1” through “z”) can potentially affect the
active lanes (e.g., lanes “0” through “n”). To prevent against
irregularities stemming from the re-awakening of the idle
lanes negatively impacting the active lanes, the active lanes
can be synchronized to send null flits (e.g., at 1225) at or
immediately prior to the initial signals (e.g., 1220) being sent
over the waking lanes.

In some implementations, re-initialization of the idle lanes
can be timed to begin, such as at the conclusion of a corre-
sponding [.Oc interval. In other instances, an alternative time
can be employed to start re-initialization early. In such
instances, a transmitter of the L.Op exit request can cause the
idle lanes to be pre-conditioned, for instance, through the
sending of one or more single EIEOSes. The sending of such
conditioning signals can be coordinated with the active lanes
so that null flits are sent momentarily on the active lanes to
coincide with the initial sending of the EIEOS and protect the
active lanes from interfering transients at the start-up of the
idle lanes, among other examples. For instance, Link layer
buffers can be alternatively or additionally used to protect
against bit loss resulting from such transients in reawaking
idle lanes, among other techniques.

Further, in some implementations, following the sending
of an initial EIEOS (or supersequence) a partial width state
exit supersequence (e.g., 1230) can be sent. At least a portion
of'the supersequence can be repeated on the active lanes (e.g.,
at 1225). Further, the device receiving supersequence 1225
can echo the supersequence to handshake and acknowledge
the state transition, among other examples. The sending of the
supersequence (e.g., 1230) can be further used to perform bit
lock, byte lock, debouncing, descrambling, and deskew. For
instance, the reactivated lanes can be deskewed against the
active lanes. In some instances, the initial configurations
determined for the idle lanes in the original initialization of
the link can be accessed and applied, although, in other
instances, the idle character of the lanes can result in changes
to the skew and other lane characteristics resulting in the
effective re-initialization of the idle lanes.

Returning briefly to FIG. 8, one example is represented of
sequences that can be sent in connection with a partial width
transmitting state exit (e.g., a transition from a L.Op state to an
LO state). As lanes are to remain active before and after such
atransition, a premium can be placed on accelerating the state
transition so as to provide minimal disruption to the active
lanes. In one example, a partial supersequence can be sent
(e.g., as in 1220 of FIG. 12) without the subsequent training
sequences to expedite debouncing. For instance, transients
can be attempted to be resolved within the first EIEOS with-
out waiting another 1KUTI for a second complete EIEOS to be
sent to begin bit lock, byte lock, deskew, and other tasks.
Further the full partial width transmitting state exit superse-
quence can include a repeating sequence of an EOS (e.g.,
EIEOS) followed by a predefined number of training

10

15

20

25

30

35

40

45

50

55

60

65

20

sequences. In the example of FIG. 8, an EIEOS can be sent
followed by a series of training sequence (e.g., seven con-
secutive training sequences). In one implementation, rather
than sending a full training sequence (such as a “TS” used in
supersequences 805, 810) an abbreviated “fast training
sequence” (or FTS) can be sent. The symbols of the FTS can
be optimized to assist with the quick bit and byte lock and
deskewing of the reactivated lanes, among other features. In
one example, the FTS can be less than 150Ul in length (e.g.,
128UI). Further, FTSes can be left unscrambled so as to
further assist in quick recovery of the idle lanes.

As shown in the third row of element 815, a partial width
transmitting state exit supersequence can also be interrupted
by an SDS once a controller has determined that the reacti-
vated lanes have been effectively initialized. In one example,
a partial FTS (or FTSp) can follow the SDS to assist with
synchronizing the reactivated lane with the active lanes (e.g.,
once bit lock, byte lock, and deskewing have been com-
pleted). For instance, the bit length of the FTSp can be set to
correspond to a clean flit boundary for the final width between
the reactivated lanes and the active lanes. To facilitate fast
synchronization of the lane, bits can be added or subtracted
from a lane at the receiver prior or during the FTSp to account
for the skew. Alternatively, or in addition, bits can also be
added or subtracted to the lane at the receiver prior or during
the SDS to facilitate deskewing of a newly activated lane,
among other examples.

Returning to the discussion of FIG. 12, transmission of
data flits can be resumed on active lanes (e.g., lanes 0 through
n) (e.g., at 1225) while initialization of the waking lanes
completes in some examples. For instance, once debouncing
has been resolved, link layer transmissions can resume. In
some instances, flit transmission can be momentarily inter-
rupted (e.g., at 1240) in connection with the final reactivation
and synchronization of the previously idle lanes (e.g., lanes
n+1 through 7) (e.g., in connection with the sending of an
FTSp 1235). With the lanes restored, flit data 1245 can then
resume on all lanes.

In one embodiment, HPI utilizes Pseudo Random Bit
Sequence (PRBS) scrambling of TS. As an example a 23-bit
PRBS is utilized (PRBS23). In one embodiment, the PRBS is
generated by a similar bit size, self-seeded storage element,
such as a linear feedback shift register. As one example, a
fixed Ul pattern may be utilized to scramble with a bypass to
an adaptation state. But by scrambling TS with PRBS23, Rx
adaptation may be performed without the bypass. Lane traffic
in a transmitting link state (TLS) and the training sequences
are scrambled with a PRBS whose starting seeds are varied
between the lanes. The PRBS is generated by a 23 bit LFSR
implementing a 6-tap generator polynomial (x""23+X""21+
X716+%"8+x" " 54+x7"2+1).

In one embodiment, the clock can be embedded in the data
so there are no separate clock lanes. The flits sent over the
lanes can be scrambled to facilitate clock recovery. The
receiver clock recovery unit, as one example, can deliver
sampling clocks to a receiver (i.e. the receiver recovers clock
from the data and uses it to sample the incoming data).
Receivers in some implementations continuously adapt to an
incoming bit stream. By embedding the clock, pinout can be
potentially reduced. However, embedding the clock in the
in-band data can alter the manner in which in-band reset is
approached. In one embodiment, a blocking link state (BLS)
can be utilized after initialization. Also, electrical ordered set
supersequences may be utilized during initialization to facili-
tate the reset (e.g., as described above), among other consid-
erations. The embedded clock can be common between the
devices on a link and the common operational clock can be set

US 9,208,121 B2

21

during calibration and configuration of the link. For instance,
HPI links can reference a common clock with drift buffers.
Such implementation can realize lower latency than elastic
buffers used in non-common reference clocks, among other
potential advantages. Further, the reference clock distribution
segments may be matched to within specified limits.

As noted above, an HPI link can be capable of operating at
multiple speeds including a “slow mode” for default power-
up, initialization, etc. The operational (or “fast”) speed or
mode of each device can be statically set by BIOS. The
common clock on the link can be configured based on the
respective operational speeds of each device on either side of
the link. For instance, the link speed can be based on the
slower of the two device operations speeds, among other
examples. Any operational speed change may be accompa-
nied by a warm or cold reset.

In some examples, on power-on, the link initializes to Slow
Mode with transfer rate of, for example, 100 MT/s. Software
then sets up the two sides for operational speed of the link and
begins the initialization. In other instances, a sideband
mechanism can be utilized to set up a link including the
common clock on the link, for instance, in the absence or
unavailability of a slow mode.

A slow mode initialization phase, in one embodiment, can
use the same encoding, scrambling, training sequences (TS),
states, etc. as operational speed but with potentially fewer
features (e.g., no electrical parameter setup, no adaptation,
etc.). Slow mode operation phase can also potentially use the
same encoding, scrambling etc. (although other implementa-
tions may not) but may have fewer states and features com-
pared to operational speed (e.g., no low power states).

Further, slow mode can be implemented using the native
phase lock loop (PLL) clock frequency of the device. For
instance, HPI can support an emulated slow mode without
changing PLL clock frequency. While some designs may use
separate PLLs for slow and fast speed, in some implementa-
tions of HPI emulated slow mode can be achieved by allowing
the PLL clock to runs at the same fast operational speed
during slow mode. For instance, a transmitter can emulate a
slower clock signal by repeating bits multiple times so as to
emulate a slow high clock signal and then a slow low clock
signal. The receiver can then oversample the received signal
to locate edges emulated by the repeating bits and identify the
bit. In such implementations, ports sharing a PLL. may coexist
at slow and fast speeds.

A common slow mode speed can be initialized between
two devices. For instance, the two devices on a link may have
different fast operational speeds. A common slow mode speed
can be configured, for instance, during a discovery phase or
state on the link. In one example, an emulation multiple can
be set as an integer (or non-integer) ratio of fast speed to slow
speed, and the different fast speeds can be down-converted to
work with the same slow speed. For instance, two device
agents which support at least one common frequency may be
hot attached irrespective of the speed at which the host port is
running. Software discovery may then use the slow mode link
to identify and setup the most optimal link operational speeds.
Where the multiple is an integer ratio of fast speed to slow
speed, different fast speeds may work with the same slow
speed, which may be used during the discovery phase (e.g., of
hot attach).

In some implementations of HPI, adaptation of lanes on a
link can be supported. The Physical layer can support both
receiver adaptation and transmitter, or sender, adaptation.
With receiver adaptation, the transmitter on a lane can send
sample data to the receiver which the receiver logic can pro-
cess to identify shortcomings in the electrical characteristics

10

15

20

25

30

35

40

45

50

55

60

65

22

of the lane and quality of the signal. The receiver can then
make adjustments to the calibration of the lane to optimize the
lane based on the analysis of the received sample data. In the
case of transmitter adaptation, the receiver can again receive
sample data and develop metrics describing the quality of the
lane but in this case communicate the metrics to the transmit-
ter (e.g., using a backchannel, such as a software, hardware,
embedded, sideband or other channel) to allow the transmitter
to make adjustments to the lane based on the feedback.
Receiver adaptation can be initiated at the start of the Polling
state using the Polling supersequence sent from the remote
transmitter. Similarly, transmitter adaptation can be done by
repeating the following for each transmitter parameters. Both
agents can enter Loopback Pattern state as masters and trans-
mit specified pattern. Both receivers can measure the metric
(e.g. BER) for that particular transmitter setting at a remote
agent. Both agents can go to Loopback Marker state and then
Reset and use backchannels (slow mode TLS or sideband) to
exchange metrics. Based on these metrics, the next transmit-
ter setting can be identified. Eventually the optimal transmit-
ter setting can be identified and saved for subsequent use.

As both devices on a link can run off the same reference
clock (e.g., ref clk), elasticity buffers can be omitted (any
elastic buffers may be bypassed or used as drift buffers with
lowest possible latency). However, phase adjustment or drift
buffers can be utilized on each lane to transfer the respective
receiver bitstream from the remote clock domain to the local
clock domain. The latency of the drift buffers may be suffi-
cient to handle sum of drift from all sources in electrical
specification (e.g., voltage, temperature, the residual SSC
introduced by reference clock routing mismatches, and so on)
but as small as possible to reduce transport delay. If the drift
buffer is too shallow, drift errors can result and manifest as
series of CRC errors. Consequently, in some implementa-
tions, a drift alarm can be provided which can initiate a
Physical layer reset before an actual drift error occurs, among
other examples.

Some implementations of HPI may support the two sides
running at a same nominal reference clock frequency but with
a ppm difference. In this case frequency adjustment (or elas-
ticity) buffers may be needed and can be readjusted during an
extended BLS window or during special sequences which
would occur periodically, among other examples.

The operation of the HPI PHY logical layer can be inde-
pendent of the underlying transmission media provided the
latency does not result in latency fixing errors or timeouts at
the link layer, among other considerations.

External interfaces can be provided in HPI to assist in
management of the Physical layer. For instance, external sig-
nals (from pins, fuses, other layers), timers, control and status
registers can be provided. The input signals may change at
any time relative to PHY state but are to be observed by the
Physical layer at specific points in a respective state. For
example, a changing alignment signal (as introduced below)
may be received but have no effect after the link has entered
a transmitting link state, among other examples. Similarly
command register values can be observed by Physical layer
entities only at specific points in time. For instance, Physical
layer logic can take a snapshot of the value and use it in
subsequent operations. Consequently, in some implementa-
tions, updates to command registers may be associated with a
limited subset of specific periods (e.g., in a transmitting link
state or when holding in Reset calibration, in slow mode
transmitting link state) to avoid anomalous behavior.

Since status values track hardware changes, the values read
may depend on when they are read. Some status values,
however, such as link map, latency, speed, etc., may not

US 9,208,121 B2

23

change after initialization. For instance, a re-initialization (or
low power link state (LPLS), or L1 state, exit) is the only thing
which may cause these to change (e.g., a hard lane failure in
a TLS may not result in reconfiguration of link until re-
initialization is triggered, among other examples).

Interface signals can include signals that are external to but
affect Physical layer behavior. Such interface signals can
include, as examples, encoding and timing signals. Interface
signals can be design specific. These signals can be an input
or output. Some interface signals, such as termed semaphores
and prefixed EO among other examples, can be active once
per assertion edge, i.e., they may be deasserted and then
reasserted to take effect again, among other examples. For
instance, Table 1 includes an example listing of example
functions:

TABLE 1

Function

input pin reset (aka warm reset)

input pin reset (aka cold reset)

input in-band reset pulse; causes semaphore to be set; semaphore is cleared
when in-band reset occurs

input enables low power states

input loopback parameters; applied for loopback pattern

input to enter PWLTS

input to exit PWLTS

input to enter LPLS

input to exit LPLS

input from idle exit detect (aka squelch break)

input enables use of CPhyInitBegin

input from local or planetary alignment for transmitter to exit initialization
output when remote agent NAKs LPLS request

output when agent enters LPLS

output to link layer to force non-retryable flits

output to link layer to force NULL flits

output when transmitter is in partial width link transmitting state (PWLTS)
output when receiver is in PWLTS

CSR timer default values can be provided in pairs—one for
slow mode and one for operational speed. In some instances,
the value O disables the timer (i.e., timeout never occurs).
Timers can include those shown in Table 2, below. Primary
timers can be used to time expected actions in a state. Sec-
ondary timers are used for aborting initializations which are
not progressing or for making forward state transitions at
precise times in an automated test equipment (or ATE) mode.
In some cases, secondary timers can be much larger than the
primary timers in a state. Exponential timer sets can be suf-
fixed with exp and the timer value is 2 raised to the field value.
For linear timers, the timer value is the field value. Either
timer could use different granularities. Additionally, some
timers in the power management section can be in a set called
a timing profile. These can be associated with a timing dia-
gram of the same name.

TABLE 2

Timers

Table Tpriexp Set

Reset residency for driving EIEOS

Receiver calibration minimum time; for stagger transmitter off
Transmitter calibration minimum time; for stagger on

Tsecexp Set

Timed receiver calibration

Timed transmitter calibration
Squelch exit detect/debounce
DetectAtRx overhang for handshake
Adapt + bitlock/bytelock/deskew

10

15

20

25

30

35

40

45

55

60

65

24
TABLE 2-continued

Timers

Configure link widths

Wait for planetary aligned clean flit boundary
Re-bytelock/deskew

Tdebugexp Set

For hot plug; non-0 value to debug hangs
TBLSentry Set

BLS entry delay-fine
BLS entry delay-coarse
TBLS Set

BLS duration for transmitter

BLS duration for receiver

BLS clean flit interval for transmitter
TBLS clean flit interval for receiver

Command and control registers can be provided. Control
registers can be late action and may be read or written by
software in some instances. Late-action values can take effect
(e.g., pass through from software-facing to hardware-facing
stage) continuously in Reset. Control semaphores (prefixed
CP) are RW1S and can be cleared by hardware. Control
registers may be utilized to perform any of the items
described herein. They may be modifiable and accessible by
hardware, software, firmware, or a combination thereof.

Status registers can be provided to track hardware changes
(written and used by hardware) and can be read-only (but
debug software may also be able to write to them). Such
registers may not affect interoperability and can be typically
complemented with many private status registers. Status
semaphores (prefixed SP) can be mandated since they may be
cleared by software to redo the actions which set the status.
Default means initial (on reset) values can be provided as a
subset of these status bits related to initialization. On an
initialization abort, this register can be copied into a storage
structure.

Tool Box registers can be provided. For instance, testabil-
ity tool-box registers in the Physical layer can provide pattern
generation, pattern checking and loop back control mecha-
nisms. Higher-level applications can make use of these reg-
isters along with electrical parameters to determine margins.
For example, Interconnect built in test may utilize this tool-
box to determine margins. For transmitter adaptation, these
registers can be used in conjunction with the specific registers
described in previous sections, among other examples.

In some implementations, HPI supports Reliability, Avail-
ability, and Serviceability (RAS) capabilities utilizing the
Physical layer. In one embodiment, HPI supports hot plug and
remove with one or more layers, which may include software.
Hot remove can include quiescing the link and an initializa-
tion begin state/signal can be cleared for the agent to be
removed. A remote agent (i.e. the one that is not being
removed (e.g., the host agent)) can be set to slow speed and its
initialization signal can also be cleared. An in-band reset
(e.g., through BLS) can cause both agents to wait in a reset
state, such as a Calibrate Reset State (CRS); and the agent to
be removed can be removed (or can be held in targeted pin
reset, powered down), among other examples and features.
Indeed, some of the above events may be omitted and addi-
tional events can be added.

Hot add can include initialization speed can default to slow
and an initialization signal can be set on the agent to be added.
Software can set speed to slow and may clear the initialization
signal on the remote agent. The link can come up in slow
mode and software can determine an operational speed. In

US 9,208,121 B2

25

some cases, no PLL relock of a remote is performed at this
point. Operational speed can be set on both agents and an
enable can be set for adaptation (if not done previously). The
initialization begin indicator can be cleared on both agents
and an in-band BLS reset can cause both agents to wait in
CRS. Software can assert a warm reset (e.g., a targeted or
self-reset) of an agent (to be added), which may cause a PLL
to relock. Software may also set the initialization begin signal
by any known logic and further set on remote (thus advancing
it to Receiver Detect State (RDS)). Software can de-assert
warm reset of the adding agent (thus advancing it to RDS).
The link can then initialize at operational speed to a Trans-
mitting Link State (TLS) (or to Loopback if the adaption
signal is set), among other examples. Indeed, some of the
above events may be omitted and additional events can be
added.

Data lane failure recovery can be supported. A link in HPI,
in one embodiment, can be resilient against hard error on a
single lane by configuring itself to less than full width (e.g.
less than half the full width) which can thereby exclude the
faulty lane. As an example, the configuration can be done by
link state machine and unused lanes can be turned off in the
configuration state. As a result, the flit may be sent across at a
narrower width, among other examples.

In some implementations of HPI, lane reversal can be
supported on some links. Lane reversal can refer, for instance,
to lanes 0/1/2 . . . of a transmitter connected to lanes n/n—1/
n-2 ... of a receiver (e.g. n may equal 19 or 7, etc.). Lane
reversal can be detected at the receiver as identified in a field
of'a TS header. The receiver can handle the lane reversal by
starting in a Polling state by using physical lanen . . . O for
logical lane O . . . n. Hence, references to a lane may refer to
a logical lane number. Therefore, board designers may more
efficiently lay down the physical or electrical design and HPI
may work with virtual lane assignments, as described herein.
Moreover, in one embodiment, polarity may be inverted (i.e.
when a differential transmitter +/— is connected to receiver
-/+. Polarity can also be detected at a receiver from one or
more TS header fields and handled, in one embodiment, in the
Polling State.

Referring to FIG. 13, an embodiment of a block diagram
for a computing system including a multicore processor is
depicted. Processor 1300 includes any processor or process-
ing device, such as a microprocessor, an embedded processor,
adigital signal processor (DSP), a network processor, a hand-
held processor, an application processor, a co-processor, a
system on a chip (SOC), or other device to execute code.
Processor 1300, in one embodiment, includes power control
1360 and at least two cores—core 1301 and 1302, which may
include asymmetric cores or symmetric cores (the illustrated
embodiment). However, processor 1300 may include any
number of processing elements that may be symmetric or
asymmetric.

In one embodiment, a processing element refers to hard-
ware or logic to support a software thread. Examples of hard-
ware processing elements include: a thread unit, a thread slot,
a thread, a process unit, a context, a context unit, a logical
processor, a hardware thread, a core, and/or any other ele-
ment, which is capable of holding a state for a processor, such
as an execution state or architectural state. In other words, a
processing element, in one embodiment, refers to any hard-
ware capable of being independently associated with code,
such as a software thread, operating system, application, or
other code. A physical processor (or processor socket) typi-
cally refers to an integrated circuit, which potentially includes
any number of other processing elements, such as cores or
hardware threads.

10

15

20

25

30

35

40

45

50

55

60

65

26

A core often refers to logic located on an integrated circuit
capable of maintaining an independent architectural state,
wherein each independently maintained architectural state is
associated with at least some dedicated execution resources.
In contrast to cores, a hardware thread typically refers to any
logic located on an integrated circuit capable of maintaining
anindependent architectural state, wherein the independently
maintained architectural states share access to execution
resources. As can be seen, when certain resources are shared
and others are dedicated to an architectural state, the line
between the nomenclature of a hardware thread and core
overlaps. Yet often, a core and a hardware thread are viewed
by an operating system as individual logical processors,
where the operating system is able to individually schedule
operations on each logical processor.

Physical processor 1300, as illustrated in FIG. 13, includes
two cores—core 1301 and 1302. Here, core 1301 and 1302
are considered symmetric cores, i.e. cores with the same
configurations, functional units, and/or logic. In another
embodiment, core 1301 includes an out-of-order processor
core, while core 1302 includes an in-order processor core.
However, cores 1301 and 1302 may be individually selected
from any type of core, such as a native core, a software
managed core, a core adapted to execute a native Instruction
Set Architecture (ISA), a core adapted to execute a translated
Instruction Set Architecture (ISA), a co-designed core, or
other known core. In a heterogeneous core environment (i.e.
asymmetric cores), some form of translation, such a binary
translation, may be utilized to schedule or execute code on
one or both cores. Yet to further the discussion, the functional
units illustrated in core 1301 are described in further detail
below, as the units in core 1302 operate in a similar manner in
the depicted embodiment.

As depicted, core 1301 includes two hardware threads,
which may also be referred to as hardware thread slots. There-
fore, software entities, such as an operating system, in one
embodiment potentially view processor 1300 as four separate
processors, i.e., four logical processors or processing ele-
ments capable of executing four software threads concur-
rently. As alluded to above, a first thread is associated with
architecture state registers 13014, a second thread is associ-
ated with architecture state registers 13015, a third thread
may be associated with architecture state registers 1302a, and
a fourth thread may be associated with architecture state
registers 13025. Here, each of the architecture state registers
(1301a, 13015, 13024, and 13025) may be referred to as
processing elements, thread slots, or thread units, as
described above. As illustrated, architecture state registers
1301a are replicated in architecture state registers 13015, so
individual architecture states/contexts are capable of being
stored for logical processor 1301a and logical processor
13015. In core 1301, other smaller resources, such as instruc-
tion pointers and renaming logic in allocator and renamer
block 1330 may also be replicated for threads 1301a and
13015. Some resources, such as re-order buffers in reorder/
retirement unit 1335, 1336, ILTB 1320, 1321, load/store buft-
ers, and queues may be shared through partitioning. Other
resources, such as general purpose internal registers, page-
table base register(s), low-level data-cache and data-TLB
1350, 1351, execution unit(s) 1340, 1341, and portions of
out-of-order unit 1335, 1336 are potentially fully shared.

Processor 1300 often includes other resources, which may
be fully shared, shared through partitioning, or dedicated
by/to processing elements. In FIG. 13, an embodiment of a
purely exemplary processor with illustrative logical units/
resources of a processor is illustrated. Note that a processor
may include, or omit, any of these functional units, as well as

US 9,208,121 B2

27

include any other known functional units, logic, or firmware
not depicted. As illustrated, core 1301 includes a simplified,
representative out-of-order (OOQ) processor core. But an
in-order processor may be utilized in different embodiments.
The OOO core includes a branch target bufter 1320 to predict
branches to be executed/taken and an instruction-translation
buffer (I-TLB) 1320 to store address translation entries for
instructions.

Core 1301 further includes decode module 1325 coupled to
fetch unit 1320 to decode fetched elements. Fetch logic, in
one embodiment, includes individual sequencers associated
with thread slots 1301a, 13015, respectively. Usually core
1301 is associated with a first ISA, which defines/specifies
instructions executable on processor 1300. Often machine
code instructions that are part of the first ISA include a portion
of the instruction (referred to as an opcode), which refer-
ences/specifies an instruction or operation to be performed.
Decode logic 1325 includes circuitry that recognizes these
instructions from their opcodes and passes the decoded
instructions on in the pipeline for processing as defined by the
first ISA. For example, as discussed in more detail below
decoders 1325, in one embodiment, include logic designed or
adapted to recognize specific instructions, such as transac-
tional instruction. As a result of the recognition by decoders
1325, the architecture or core 1301 takes specific, predefined
actions to perform tasks associated with the appropriate
instruction. Itis important to note that any of the tasks, blocks,
operations, and methods described herein may be performed
in response to a single or multiple instructions; some of which
may be new or old instructions. Note decoders 1326, in one
embodiment, recognize the same ISA (or a subset thereof).
Alternatively, in a heterogeneous core environment, decoders
1326 recognize a second ISA (either a subset of the first ISA
or a distinct ISA).

In one example, allocator and renamer block 1330, 1331
includes an allocator to reserve resources, such as register
files to store instruction processing results. However, threads
1301a and 13015 are potentially capable of out-of-order
execution, where allocator and renamer block 1330, 1331
also reserves other resources, such as reorder buffers to track
instruction results. Unit 1330, 1331 may also include a reg-
ister renamer to rename program/instruction reference regis-
ters to other registers internal to processor 1300. Reorder/
retirement unit 1335, 1336 includes components, such as the
reorder buffers mentioned above, load buffers, and store buft-
ers, to support out-of-order execution and later in-order
retirement of instructions executed out-of-order.

Scheduler and execution unit(s) block 1340, 1341, in one
embodiment, includes a scheduler unit to schedule instruc-
tions/operation on execution units. For example, a floating
point instruction is scheduled on a port of an execution unit
that has an available floating point execution unit. Register
files associated with the execution units are also included to
store information instruction processing results. Exemplary
execution units include a floating point execution unit, an
integer execution unit, a jump execution unit, a load execution
unit, a store execution unit, and other known execution units.

Lower level data cache and data translation buffer (D-TLB)
1350, 1351 are coupled to execution unit(s) 1340, 1341. The
data cache is to store recently used/operated on elements,
such as data operands, which are potentially held in memory
coherency states. The D-TLB is to store recent virtual/linear
to physical address translations. As a specific example, a
processor may include a page table structure to break physical
memory into a plurality of virtual pages.

Here, cores 1301 and 1302 share access to higher-level or
further-out cache, such as a second level cache associated

10

15

20

25

30

35

40

45

50

55

60

65

28

with on-chip interface 1310. Note that higher-level or further-
out refers to cache levels increasing or getting further way
from the execution unit(s). In one embodiment, higher-level
cache is a last-level data cache—last cache in the memory
hierarchy on processor 1300—such as a second or third level
data cache. However, higher level cache is not so limited, as it
may be associated with or include an instruction cache. A
trace cache—a type of instruction cache—instead may be
coupled after decoder 1325 to store recently decoded traces.
Here, an instruction potentially refers to a macro-instruction
(i.e. a general instruction recognized by the decoders), which
may decode into a number of micro-instructions (micro-op-
erations).

Inthe depicted configuration, processor 1300 also includes
on-chip interface module 1310. Historically, a memory con-
troller, which is described in more detail below, has been
included in a computing system external to processor 1300. In
this scenario, on-chip interface 1310 is to communicate with
devices external to processor 1300, such as system memory
1375, a chipset (often including a memory controller hub to
connect to memory 1375 and an I/O controller hub to connect
peripheral devices), a memory controller hub, a northbridge,
or other integrated circuit. And in this scenario, bus 1305 may
include any known interconnect, such as multi-drop bus, a
point-to-point interconnect, a serial interconnect, a parallel
bus, a coherent (e.g. cache coherent) bus, a layered protocol
architecture, a differential bus, and a GTL bus.

Memory 1375 may be dedicated to processor 1300 or
shared with other devices in a system. Common examples of
types of memory 1375 include DRAM, SRAM, non-volatile
memory (NV memory), and other known storage devices.
Note that device 1380 may include a graphic accelerator,
processor or card coupled to a memory controller hub, data
storage coupled to an I/O controller hub, a wireless trans-
ceiver, a flash device, an audio controller, a network control-
ler, or other known device.

Recently however, as more logic and devices are being
integrated on a single die, such as SOC, each of these devices
may be incorporated on processor 1300. For example in one
embodiment, amemory controller hub is on the same package
and/or die with processor 1300. Here, a portion of the core (an
on-core portion) 1310 includes one or more controller(s) for
interfacing with other devices such as memory 1375 or a
graphics device 1380. The configuration including an inter-
connect and controllers for interfacing with such devices is
often referred to as an on-core (or un-core configuration). As
an example, on-chip interface 1310 includes a ring intercon-
nect for on-chip communication and a high-speed serial
point-to-point link 1305 for off-chip communication. Yet, in
the SOC environment, even more devices, such as the net-
work interface, co-processors, memory 1375, graphics pro-
cessor 1380, and any other known computer devices/interface
may be integrated on a single die or integrated circuit to
provide small form factor with high functionality and low
power consumption.

Inone embodiment, processor 1300 is capable of executing
acompiler, optimization, and/or translator code 1377 to com-
pile, translate, and/or optimize application code 1376 to sup-
port the apparatus and methods described herein or to inter-
face therewith. A compiler often includes a program or set of
programs to translate source text/code into target text/code.
Usually, compilation of program/application code with a
compiler is done in multiple phases and passes to transform
hi-level programming language code into low-level machine
or assembly language code. Yet, single pass compilers may
still be utilized for simple compilation. A compiler may uti-
lize any known compilation techniques and perform any

US 9,208,121 B2

29

known compiler operations, such as lexical analysis, prepro-
cessing, parsing, semantic analysis, code generation, code
transformation, and code optimization.

Larger compilers often include multiple phases, but most
often these phases are included within two general phases: (1)
afront-end, i.e. generally where syntactic processing, seman-
tic processing, and some transformation/optimization may
take place, and (2) a back-end, i.e. generally where analysis,
transformations, optimizations, and code generation takes
place. Some compilers refer to a middle, which illustrates the
blurring of delineation between a front-end and back end of a
compiler. As a result, reference to insertion, association, gen-
eration, or other operation of a compiler may take place in any
of the aforementioned phases or passes, as well as any other
known phases or passes of a compiler. As an illustrative
example, a compiler potentially inserts operations, calls,
functions, etc. in one or more phases of compilation, such as
insertion of calls/operations in a front-end phase of compila-
tion and then transformation of the calls/operations into
lower-level code during a transformation phase. Note that
during dynamic compilation, compiler code or dynamic opti-
mization code may insert such operations/calls, as well as
optimize the code for execution during runtime. As a specific
illustrative example, binary code (already compiled code)
may be dynamically optimized during runtime. Here, the
program code may include the dynamic optimization code,
the binary code, or a combination thereof.

Similar to a compiler, a translator, such as a binary trans-
lator, translates code either statically or dynamically to opti-
mize and/or translate code. Therefore, reference to execution
of code, application code, program code, or other software
environment may refer to: (1) execution of a compiler pro-
gram(s), optimization code optimizer, or translator either
dynamically or statically, to compile program code, to main-
tain software structures, to perform other operations, to opti-
mize code, or to translate code; (2) execution of main program
code including operations/calls, such as application code that
has been optimized/compiled; (3) execution of other program
code, such as libraries, associated with the main program
code to maintain software structures, to perform other soft-
ware related operations, or to optimize code; or (4) a combi-
nation thereof.

Referring now to FIG. 14, shown is a block diagram of an
embodiment of a multicore processor. As shown in the
embodiment of FIG. 14, processor 1400 includes multiple
domains. Specifically, a core domain 1430 includes a plural-
ity of cores 1430A-1430N, a graphics domain 1460 includes
one or more graphics engines having a media engine 1465,
and a system agent domain 1410.

In various embodiments, system agent domain 1410
handles power control events and power management, such
that individual units of domains 1430 and 1460 (e.g. cores
and/or graphics engines) are independently controllable to
dynamically operate at an appropriate power mode/level (e.g.
active, turbo, sleep, hibernate, deep sleep, or other Advanced
Configuration Power Interface like state) in light of the activ-
ity (or inactivity) occurring in the given unit. Each of domains
1430 and 1460 may operate at different voltage and/or power,
and furthermore the individual units within the domains each
potentially operate at an independent frequency and voltage.
Note that while only shown with three domains, understand
the scope of the present invention is not limited in this regard
and additional domains may be present in other embodi-
ments.

As shown, each core 1430 further includes low level caches
in addition to various execution units and additional process-
ing elements. Here, the various cores are coupled to each

10

15

20

25

30

35

40

45

50

55

60

65

30

other and to a shared cache memory that is formed of a
plurality of units or slices of a last level cache (LLC) 1440 A-
1440N; these LLCs often include storage and cache control-
ler functionality and are shared amongst the cores, as well as
potentially among the graphics engine too.

As seen, a ring interconnect 1450 couples the cores
together, and provides interconnection between the core
domain 1430, graphics domain 1460 and system agent cir-
cuitry 1410, via a plurality of ring stops 1452A-1452N, each
at a coupling between a core and LLC slice. As seen in FIG.
14, interconnect 1450 is used to carry various information,
including address information, data information, acknowl-
edgement information, and snoop/invalid information.
Although a ring interconnect is illustrated, any known on-die
interconnect or fabric may be utilized. As an illustrative
example, some of the fabrics discussed above (e.g. another
on-die interconnect, On-chip System Fabric (OSF), an
Advanced Microcontroller Bus Architecture (AMBA) inter-
connect, a multi-dimensional mesh fabric, or other known
interconnect architecture) may be utilized in a similar fash-
ion.

As further depicted, system agent domain 1410 includes
display engine 1412 which is to provide control of and an
interface to an associated display. System agent domain 1410
may include other units, such as: an integrated memory con-
troller 1420 that provides for an interface to a system memory
(e.g., a DRAM implemented with multiple DIMMs; coher-
ence logic 1422 to perform memory coherence operations.
Multiple interfaces may be present to enable interconnection
between the processor and other circuitry. For example, in
one embodiment at least one direct media interface (DMI)
1416 interface is provided as well as one or more PCle™
interfaces 1414. The display engine and these interfaces typi-
cally couple to memory via a PCle™ bridge 1418. Still fur-
ther, to provide for communications between other agents,
such as additional processors or other circuitry, one or more
other interfaces may be provided.

Referring now to FIG. 15, shown is a block diagram of a
representative core; specifically, logical blocks of a back-end
of a core, such as core 1430 from FIG. 14. In general, the
structure shown in FIG. 15 includes an out-of-order processor
that has a front end unit 1570 used to fetch incoming instruc-
tions, perform various processing (e.g. caching, decoding,
branch predicting, etc.) and passing instructions/operations
along to an out-of-order (OOO) engine 1580. OOO engine
1580 performs further processing on decoded instructions.

Specifically in the embodiment of FIG. 15, out-of-order
engine 1580 includes an allocate unit 1582 to receive decoded
instructions, which may be in the form of one or more micro-
instructions or uops, from front end unit 1570, and allocate
them to appropriate resources such as registers and so forth.
Next, the instructions are provided to a reservation station
1584, which reserves resources and schedules them for
execution on one of a plurality of execution units 1586A-
1586N. Various types of execution units may be present,
including, for example, arithmetic logic units (ALUs), load
and store units, vector processing units (VPUs), floating point
execution units, among others. Results from these different
execution units are provided to a reorder buffer (ROB) 1588,
which take unordered results and return them to correct pro-
gram order.

Still referring to FIG. 15, note that both front end unit 1570
and out-of-order engine 1580 are coupled to different levels
of' a memory hierarchy. Specifically shown is an instruction
level cache 1572, that in turn couples to a mid-level cache
1576, that in turn couples to a last level cache 1595. In one
embodiment, last level cache 1595 is implemented in an

US 9,208,121 B2

31

on-chip (sometimes referred to as uncore) unit 1590. As an
example, unit 1590 is similar to system agent 1410 of FIG. 14.
As discussed above, uncore 1590 communicates with system
memory 1599, which, in the illustrated embodiment, is imple-
mented via ED RAM. Note also that the various execution
units 1586 within out-of-order engine 1580 are in communi-
cation with a first level cache 1574 that also is in communi-
cation with mid-level cache 1576. Note also that additional
cores 1530N-2-1530N can couple to LLC 1595. Although
shown at this high level in the embodiment of FIG. 15, under-
stand that various alterations and additional components may
be present.

Turning to FIG. 16, a block diagram of an exemplary
computer system formed with a processor that includes
execution units to execute an instruction, where one or more
of'the interconnects implement one or more features in accor-
dance with one embodiment of the present invention is illus-
trated. System 1600 includes a component, such as a proces-
sor 1602 to employ execution units including logic to perform
algorithms for process data, in accordance with the present
invention, such as in the embodiment described herein. Sys-
tem 1600 is representative of processing systems based on the
PENTIUM III™, PENTIUM 4™, Xeon™, Itanium,
XScale™ and/or StrongARM™ microprocessors, although
other systems (including PCs having other microprocessors,
engineering workstations, set-top boxes and the like) may
also be used. In one embodiment, sample system 1600
executes a version of the WINDOWS™ operating system
available from Microsoft Corporation of Redmond, Wash.,
although other operating systems (UNIX and Linux for
example), embedded software, and/or graphical user inter-
faces, may also be used. Thus, embodiments of the present
invention are not limited to any specific combination of hard-
ware circuitry and software.

Embodiments are not limited to computer systems. Alter-
native embodiments of the present invention can be used in
other devices such as handheld devices and embedded appli-
cations. Some examples of handheld devices include cellular
phones, Internet Protocol devices, digital cameras, personal
digital assistants (PDAs), and handheld PCs. Embedded
applications can include a micro controller, a digital signal
processor (DSP), system on a chip, network computers
(NetPC), set-top boxes, network hubs, wide area network
(WAN) switches, or any other system that can perform one or
more instructions in accordance with at least one embodi-
ment.

In this illustrated embodiment, processor 1602 includes
one or more execution units 1608 to implement an algorithm
that is to perform at least one instruction. One embodiment
may be described in the context of a single processor desktop
or server system, but alternative embodiments may be
included in a multiprocessor system. System 1600 is an
example of a “hub’ system architecture. The computer system
1600 includes a processor 1602 to process data signals. The
processor 1602, as one illustrative example, includes a com-
plex instruction set computer (CISC) microprocessor, a
reduced instruction set computing (RISC) microprocessor, a
very long instruction word (VLIW) microprocessor, a pro-
cessor implementing a combination of instruction sets, or any
other processor device, such as a digital signal processor, for
example. The processor 1602 is coupled to a processor bus
1610 that transmits data signals between the processor 1602
and other components in the system 1600. The elements of
system 1600 (e.g. graphics accelerator 1612, memory con-
troller hub 1616, memory 1620, 1/O controller hub 1624,
wireless transceiver 1626, Flash BIOS 1628, Network con-
troller 1634, Audio controller 1636, Serial expansion port

10

15

20

25

30

35

40

45

50

55

60

65

32

1638, 1/O controller 1640, etc.) perform their conventional
functions that are well known to those familiar with the art.

In one embodiment, the processor 1602 includes a Level 1
(L1) internal cache memory 1604. Depending on the archi-
tecture, the processor 1602 may have a single internal cache
or multiple levels of internal caches. Other embodiments
include a combination of both internal and external caches
depending on the particular implementation and needs. Reg-
ister file 1606 is to store different types of data in various
registers including integer registers, floating point registers,
vector registers, banked registers, shadow registers, check-
point registers, status registers, and instruction pointer regis-
ter.

Execution unit 1608, including logic to perform integer
and floating point operations, also resides in the processor
1602. The processor 1602, in one embodiment, includes a
microcode (ucode) ROM to store microcode, which when
executed, is to perform algorithms for certain macroinstruc-
tions or handle complex scenarios. Here, microcode is poten-
tially updateable to handle logic bugs/fixes for processor
1602. For one embodiment, execution unit 1608 includes
logic to handle a packed instruction set 1609. By including
the packed instruction set 1609 in the instruction set of a
general-purpose processor 1602, along with associated cir-
cuitry to execute the instructions, the operations used by
many multimedia applications may be performed using
packed data in a general-purpose processor 1602. Thus, many
multimedia applications are accelerated and executed more
efficiently by using the full width of a processor’s data bus for
performing operations on packed data. This potentially elimi-
nates the need to transfer smaller units of data across the
processor’s data bus to perform one or more operations, one
data element at a time.

Alternate embodiments of an execution unit 1608 may also
be used in micro controllers, embedded processors, graphics
devices, DSPs, and other types of logic circuits. System 1600
includes a memory 1620. Memory 1620 includes a dynamic
random access memory (DRAM) device, a static random
access memory (SRAM) device, flash memory device, or
other memory device. Memory 1620 stores instructions and/
or data represented by data signals that are to be executed by
the processor 1602.

Note that any of the aforementioned features or aspects of
the invention may be utilized on one or more interconnect
illustrated in FIG. 16. For example, an on-die interconnect
(ODI), which is not shown, for coupling internal units of
processor 1602 implements one or more aspects of the inven-
tion described above. Or the invention is associated with a
processor bus 1610 (e.g. other known high performance com-
puting interconnect), a high bandwidth memory path 1618 to
memory 1620, a point-to-point link 1614 to graphics accel-
erator 1612 (e.g. a Peripheral Component Interconnect
express (PCle) compliant fabric), a controller hub intercon-
nect 1622, an I/O or other interconnect (e.g. USB, PCI, PCle)
for coupling the other illustrated components. Some
examples of such components include the audio controller
1636, firmware hub (flash BIOS) 1628, wireless transceiver
1626, data storage 1624, legacy /O controller 1640 contain-
ing user input and keyboard interfaces 1642, a serial expan-
sion port 1638 such as Universal Serial Bus (USB), and a
network controller 1634. The data storage device 1624 can
comprise a hard disk drive, a floppy disk drive, a CD-ROM
device, a flash memory device, or other mass storage device.

Referring now to FIG. 17, shown is a block diagram of a
second system 1700 in accordance with an embodiment of the
present invention. As shown in FIG. 17, multiprocessor sys-
tem 1700 is a point-to-point interconnect system, and

US 9,208,121 B2

33

includes a first processor 1770 and a second processor 1780
coupled via a point-to-point interconnect 1750. Each of pro-
cessors 1770 and 1780 may be some version of a processor. In
one embodiment, 1752 and 1754 are part of a serial, point-
to-point coherent interconnect fabric, such as a high-perfor-
mance architecture. As a result, the invention may be imple-
mented within the QPI architecture.

While shown with only two processors 1770, 1780, it is to
be understood that the scope of the present invention is not so
limited. In other embodiments, one or more additional pro-
cessors may be present in a given processor.

Processors 1770 and 1780 are shown including integrated
memory controller units 1772 and 1782, respectively. Proces-
sor 1770 also includes as part of its bus controller units
point-to-point (P-P) interfaces 1776 and 1778; similarly, sec-
ond processor 1780 includes P-P interfaces 1786 and 1788.
Processors 1770, 1780 may exchange information via a point-
to-point (P-P) interface 1750 using P-P interface circuits
1778, 1788. As shown in FIG. 17, IMCs 1772 and 1782
couple the processors to respective memories, namely a
memory 1732 and a memory 1734, which may be portions of
main memory locally attached to the respective processors.

Processors 1770, 1780 each exchange information with a
chipset 1790 via individual P-P interfaces 1752, 1754 using
point to point interface circuits 1776, 1794, 1786, 1798.
Chipset 1790 also exchanges information with a high-perfor-
mance graphics circuit 1738 via an interface circuit 1792
along a high-performance graphics interconnect 1739.

A shared cache (not shown) may be included in either
processor or outside of both processors; yet connected with
the processors via P-P interconnect, such that either or both
processors’ local cache information may be stored in the
shared cache if a processor is placed into a low power mode.

Chipset 1790 may be coupled to a first bus 1716 via an
interface 1796. In one embodiment, first bus 1716 may be a
Peripheral Component Interconnect (PCI) bus, or a bus such
as a PCI Express bus or another third generation 1/O inter-
connect bus, although the scope of the present invention is not
so limited.

As shown in FIG. 17, various 1/O devices 1714 are coupled
to first bus 1716, along with a bus bridge 1718 which couples
first bus 1716 to a second bus 1720. In one embodiment,
second bus 1720 includes a low pin count (LPC) bus. Various
devices are coupled to second bus 1720 including, for
example, a keyboard and/or mouse 1722, communication
devices 1727 and a storage unit 1728 such as a disk drive or
other mass storage device which often includes instructions/
code and data 1730, in one embodiment. Further, an audio I/O
1724 is shown coupled to second bus 1720. Note that other
architectures are possible, where the included components
and interconnect architectures vary. For example, instead of
the point-to-point architecture of FIG. 17, a system may
implement a multi-drop bus or other such architecture.

Turning next to FIG. 18, an embodiment of a system on-
chip (SOC) design in accordance with the inventions is
depicted. As a specific illustrative example, SOC 1800 is
included in user equipment (UE). In one embodiment, UE
refers to any device to be used by an end-user to communi-
cate, such as ahand-held phone, smartphone, tablet, ultra-thin
notebook, notebook with broadband adapter, or any other
similar communication device. Often a UE connects to a base
station or node, which potentially corresponds in nature to a
mobile station (MS) in a GSM network.

Here, SOC 1800 includes a power control 1855 and 2
cores—1806 and 1807. Similar to the discussion above, cores
1806 and 1807 may conform to an Instruction Set Architec-
ture, such as an Intel® Architecture Core™-based processor,

10

15

20

25

30

35

40

45

50

55

60

65

34

an Advanced Micro Devices, Inc. (AMD) processor, a MIPS-
based processor, an ARM-based processor design, or a cus-
tomer thereof, as well as their licensees or adopters. Cores
1806 and 1807 are coupled to cache control 1808 that is
associated with bus interface unit 1809 and L.2 cache 1811 to
communicate with other parts of system 1800. Interconnect
1810 includes an on-chip interconnect, such as an IOSF,
AMBA, or other interconnect discussed above, which poten-
tially implements one or more aspects of described herein.

Interconnect 1810 provides communication channels to
the other components, such as a Subscriber Identity Module
(SIM) 1830 to interface with a SIM card, a boot rom 1835 to
hold boot code for execution by cores 1806 and 1807 to
initialize and boot SOC 1800, a SDRAM controller 1840 to
interface with external memory (e.g. DRAM 1860), a flash
controller 1845 to interface with non-volatile memory (e.g.
Flash 1865), a peripheral control 1850 (e.g. Serial Peripheral
Interface) to interface with peripherals, video codecs 1820
and Video interface 1825 to display and receive input (e.g.
touch enabled input), GPU 1815 to perform graphics related
computations, etc. Any of these interfaces may incorporate
aspects of the invention described herein.

In addition, the system illustrates peripherals for commu-
nication, such as a Bluetooth module 1870, 3G modem 1875,
GPS 1880, and WiFi 1885. Note as stated above, a UE
includes a radio for communication. As a result, these periph-
eral communication modules are not all required. However, in
a UE some form a radio for external communication is to be
included.

While the present invention has been described with
respect to a limited number of embodiments, those skilled in
the art will appreciate numerous modifications and variations
therefrom. It is intended that the appended claims cover all
such modifications and variations as fall within the true spirit
and scope of this present invention.

A design may go through various stages, from creation to
simulation to fabrication. Data representing a design may
represent the design in a number of manners. First, as is useful
in simulations, the hardware may be represented using a
hardware description language or another functional descrip-
tion language. Additionally, a circuit level model with logic
and/or transistor gates may be produced at some stages of the
design process. Furthermore, most designs, at some stage,
reach a level of data representing the physical placement of
various devices in the hardware model. In the case where
conventional semiconductor fabrication techniques are used,
the data representing the hardware model may be the data
specifying the presence or absence of various features on
different mask layers for masks used to produce the integrated
circuit. In any representation of the design, the data may be
stored in any form of a machine readable medium. A memory
or a magnetic or optical storage such as a disc may be the
machine readable medium to store information transmitted
via optical or electrical wave modulated or otherwise gener-
ated to transmit such information. When an electrical carrier
wave indicating or carrying the code or design is transmitted,
to the extent that copying, buffering, or re-transmission of the
electrical signal is performed, a new copy is made. Thus, a
communication provider or a network provider may store on
atangible, machine-readable medium, at least temporarily, an
article, such as information encoded into a carrier wave,
embodying techniques of embodiments of the present inven-
tion.

A module as used herein refers to any combination of
hardware, software, and/or firmware. As an example, a mod-
ule includes hardware, such as a micro-controller, associated
with a non-transitory medium to store code adapted to be

US 9,208,121 B2

35

executed by the micro-controller. Therefore, reference to a
module, in one embodiment, refers to the hardware, which is
specifically configured to recognize and/or execute the code
to be held on a non-transitory medium. Furthermore, in
another embodiment, use of a module refers to the non-
transitory medium including the code, which is specifically
adapted to be executed by the microcontroller to perform
predetermined operations. And as can be inferred, in yet
another embodiment, the term module (in this example) may
refer to the combination of the microcontroller and the non-
transitory medium. Often module boundaries that are illus-
trated as separate commonly vary and potentially overlap. For
example, a first and a second module may share hardware,
software, firmware, or a combination thereof, while poten-
tially retaining some independent hardware, software, or
firmware. In one embodiment, use of the term logic includes
hardware, such as transistors, registers, or other hardware,
such as programmable logic devices.

Use of the phrase ‘configured to,” in one embodiment,
refers to arranging, putting together, manufacturing, offering
to sell, importing and/or designing an apparatus, hardware,
logic, or element to perform a designated or determined task.
In this example, an apparatus or element thereof that is not
operating is still ‘configured to’ perform a designated task if'it
is designed, coupled, and/or interconnected to perform said
designated task. As a purely illustrative example, a logic gate
may provide a 0 or a 1 during operation. But a logic gate
‘configured to’ provide an enable signal to a clock does not
include every potential logic gate that may provide a 1 or 0.
Instead, the logic gate is one coupled in some manner that
during operation the 1 or O output is to enable the clock. Note
once again that use of the term ‘configured to’ does not
require operation, but instead focus on the latent state of an
apparatus, hardware, and/or element, where in the latent state
the apparatus, hardware, and/or element is designed to per-
form a particular task when the apparatus, hardware, and/or
element is operating.

Furthermore, use of the phrases ‘to,” ‘capable of/to,” and or
‘operable to,” in one embodiment, refers to some apparatus,
logic, hardware, and/or element designed in such a way to
enable use of the apparatus, logic, hardware, and/or element
in a specified manner. Note as above that use of to, capable to,
or operable to, in one embodiment, refers to the latent state of
an apparatus, logic, hardware, and/or element, where the
apparatus, logic, hardware, and/or element is not operating
but is designed in such a manner to enable use of an apparatus
in a specified manner.

A value, as used herein, includes any known representation
of'a number, a state, a logical state, or a binary logical state.
Often, the use of logic levels, logic values, or logical values is
also referred to as 1’s and 0’s, which simply represents binary
logic states. For example, a 1 refers to a high logic level and
Orefers to alow logic level. In one embodiment, a storage cell,
such as a transistor or flash cell, may be capable of holding a
single logical value or multiple logical values. However, other
representations of values in computer systems have been
used. For example the decimal number ten may also be rep-
resented as a binary value of 1010 and a hexadecimal letter A.
Therefore, a value includes any representation of information
capable of being held in a computer system.

Moreover, states may be represented by values or portions
of values. As an example, a first value, such as a logical one,
may represent a default or initial state, while a second value,
such as a logical zero, may represent a non-default state. In
addition, the terms reset and set, in one embodiment, refer to
a default and an updated value or state, respectively. For
example, a default value potentially includes a high logical

10

20

25

30

35

40

45

50

55

60

65

36

value, i.e. reset, while an updated value potentially includes a
low logical value, i.e. set. Note that any combination of values
may be utilized to represent any number of states.

The embodiments of methods, hardware, software, firm-
ware or code set forth above may be implemented via instruc-
tions or code stored on a machine-accessible, machine read-
able, computer accessible, or computer readable medium
which are executable by a processing element. A non-transi-
tory machine-accessible/readable medium includes any
mechanism that provides (i.e., stores and/or transmits) infor-
mation in a form readable by a machine, such as a computer
or electronic system. For example, a non-transitory machine-
accessible medium includes random-access memory (RAM),
such as static RAM (SRAM) or dynamic RAM (DRAM);
ROM; magnetic or optical storage medium; flash memory
devices; electrical storage devices; optical storage devices;
acoustical storage devices; other form of storage devices for
holding information received from transitory (propagated)
signals (e.g., carrier waves, infrared signals, digital signals);
etc, which are to be distinguished from the non-transitory
mediums that may receive information there from.

Instructions used to program logic to perform embodi-
ments of the invention may be stored within a memory in the
system, such as DRAM, cache, flash memory, or other stor-
age. Furthermore, the instructions can be distributed via a
network or by way of other computer readable media. Thus a
machine-readable medium may include any mechanism for
storing or transmitting information in a form readable by a
machine (e.g., a computer), but is not limited to, floppy dis-
kettes, optical disks, Compact Disc, Read-Only Memory
(CD-ROMs), and magneto-optical disks, Read-Only
Memory (ROMs), Random Access Memory (RAM), Eras-
able Programmable Read-Only Memory (EPROM), Electri-
cally Erasable Programmable Read-Only Memory (EE-
PROM), magnetic or optical cards, flash memory, or a
tangible, machine-readable storage used in the transmission
of information over the Internet via electrical, optical, acous-
tical or other forms of propagated signals (e.g., carrier waves,
infrared signals, digital signals, etc.). Accordingly, the com-
puter-readable medium includes any type of tangible
machine-readable medium suitable for storing or transmitting
electronic instructions or information in a form readable by a
machine (e.g., a computer).

The following examples pertain to embodiments in accor-
dance with this Specification. One or more embodiments may
provide an apparatus, a system, a machine readable storage, a
machine readable medium, and a method to embed a periodic
control window in a link layer data stream to be sent over a
serial data link, wherein the control window is configured to
provide physical layer information including information for
use in initiating state transitions on the data link.

In at least one example, the data stream comprises a series
of flits.

In at least one example, the link layer data stream is sent
during a link transmitting state of the data link.

One or more examples can further provide identifying a
particular control window in the data stream and send reset
data to a device connected to the data link during the particu-
lar control window, wherein the reset data is to communicate
an attempt to enter a reset state from the link transmitting
state.

One or more examples can further provide generating a
supersequence associated with the reset state and send the
supersequence to the device.

One or more examples can further provide identifying a
particular control window in the data stream and send link
width transition data to a device connected to the data link

US 9,208,121 B2

37

during the particular control window, wherein the link width
transition data is to communicate an attempt to change the
number of active lanes on the link.

In at least one example, the number of lanes are to be
reduced from an original number to a new number, wherein
reducing the number of active lanes is associated with entry
into a partial width link transmitting state.

One or more examples can further provide identifying a
subsequent control window in the data stream and send partial
width state exit data to the device during the subsequent
control window, wherein the partial width state exit data is to
communicate an attempt to return the number of active lanes
to the original number.

One or more examples can further provide identifying a
particular control window in the data stream and send low
power data to a device connected to the data link during the
particular control window, wherein the low power data is to
communicate an attempt to enter a low power state from the
link transmitting state.

In at least one example, control windows are embedded
according to a defined control interval and devices connected
to the data link are to synchronize the state transition with an
end of a corresponding control interval.

One or more embodiments may provide an apparatus, a
system, a machine readable storage, a machine readable
medium, and a method to receive a data stream wherein the
data stream is to include alternating transmitting intervals and
control intervals, wherein link layer flits are to be sent during
the transmitting intervals and the control intervals are to pro-
vide opportunities to send physical layer control information,
identify control data to be included in a particular one of the
control intervals, the control data to indicate an attempted
entry into a particular state from a first state, wherein the data
stream is to be received in the first state, and facilitate transi-
tion into the particular state.

In at least one example, the particular state comprises a
reset state.

In at least one example, facilitating transition into the par-
ticular state includes sending an acknowledgement of the
attempted entry into the particular state.

In at least one example, the acknowledgement is sent
within the control interval.

In atleast one example, the data stream is sent over a serial
data link including a plurality of active lanes and the particu-
lar state comprises a partial width state, wherein at least a
subset of lanes included in the plurality of active lanes are to
become idle in the partial width state.

One or more examples can further provide identifying sub-
sequent data included in a subsequent one of the control
intervals, the subsequent data indicating an attempt to exit the
partial width state and reactivate the idle lanes.

In at least one example, the particular state comprises a low
power transmitting state.

In at least one example, the data stream is received over a
serial data link including a plurality of active lanes and the
particular state comprises a partial width state, wherein at
least a subset of lanes included in the plurality of active lanes
are to become idle in the partial width state.

In at least one example, the particular state comprises a
reset state.

In at least one example, the physical layer control informa-
tion describes an error of the data link.

One or more embodiments may provide an apparatus, a
system, a machine readable storage, a machine readable
medium, and a method to embed a clock signal in data to be
communicated from a first device over a serial data link
including a plurality of lanes, and transition from a first link

10

15

20

25

30

35

40

45

50

55

60

65

38

transmitting state that is to use a first number of the plurality
of lanes to a second link transmitting state that is to use a
second number of the plurality of lanes.

In at least one example, the second number of lanes is
greater than the first number of lanes.

In at least one example, transitioning from the first link
transmitting state to the second link transmitting state
includes sending a partial width state exit supersequence
comprising one or more instances of a sequence including an
electrical ordered set (EOS) and a plurality of instances of a
training sequence.

In at least one example, transitioning from the first link
transmitting state to the second link transmitting state further
includes sending an initial EOS preceding the partial width
state exit supersequence.

In at least one example, null flits are to be sent on active
lanes during the sending of the initial EOS.

In atleast one example, the training sequence comprises an
unscrambled fast training sequence (FTS).

In at least one example, transitioning from the first link
transmitting state to the second link transmitting state further
includes using the partial width state exit supersequence to
initialize at least a portion of idle lanes included in the plu-
rality of lanes.

In at least one example, transitioning from the first link
transmitting state to the second link transmitting state further
includes sending a start of data sequence (SDS) following
initialization of the portion of the idle lanes.

In at least one example, transitioning from the first link
transmitting state to the second link transmitting state further
includes sending a partial FTS (FTSp) following the sending
of the SDS.

In at least one example, transitioning from the first link
transmitting state to the second link transmitting state further
includes receiving an acknowledgement of the transition,
wherein the acknowledgement includes the partial width state
exit supersequence.

In at least one example, transitioning from the first link
transmitting state to the second link transmitting state
includes sending an in-band signal over the data link to the
second device.

In at least one example, the first number of lanes is greater
than the second number of lanes.

In at least one example, the data comprises a datastream
including alternating transmitting intervals and control inter-
vals, and the signal is sent within a particular control interval
and indicates the transition from the first link transmitting
state to the second link transmitting state.

In at least one example, the transition from the first link
transmitting state to the second link transmitting state is to be
synchronized with end of a particular transmitting interval
immediately following the particular control interval.

In at least one example, the transition is based on a request
of'a power control unit.

One or more embodiments may provide an apparatus, a
system, a machine readable storage, a machine readable
medium, and a method to receive a data stream wherein the
data stream is to include alternating transmitting intervals and
control intervals, wherein the control intervals are to provide
opportunities to send physical layer control information, and
the data stream is to be sent over a serial data link that is to
include active lanes and inactive lanes, identify control data
included in a particular one of the control intervals, wherein
the data is to indicate an attempt to activate at least a portion
of'the inactive lanes of the link, and facilitate activation of the
portion of the inactive lanes.

US 9,208,121 B2

39

In at least one example, the data stream is received while
the data link is in a partial width state and the control data is
to indicate an attempt to exit the partial width state.

In atleast one example, facilitating activation of the portion
of the inactive lanes is to include receiving a supersequence
that is to indicate the attempt to activate the portion of the
inactive lanes.

In at least one example, the supersequence is to comprise
one or more instances of a sequence including an electric idle
exit ordered set (EIEOS) and a plurality of instances of a
training sequence.

In atleast one example, facilitating activation of the portion
of the inactive lanes includes sending at least one initial
EIEOS to immediately precede the supersequence.

In at least one example, null flits are to be sent on the active
lanes during the sending of the initial EIEOS.

In at least one example, the training sequence comprises an
unscrambled fast training sequence (FTS).

In atleast one example, facilitating activation of the portion
of'the inactive lanes further includes using the supersequence
to initialize the portion of the inactive lanes.

In atleast one example, facilitating activation of the portion
of the inactive lanes further includes receiving a start of data
sequence (SDS) following initialization of the portion of the
inactive lanes.

In atleast one example, facilitating activation of the portion
of the inactive lanes further includes receiving a partial FTS
(FTSp) following the SDS.

In atleast one example, facilitating activation of the portion
of the inactive lanes further includes acknowledging the
attempt by echoing the supersequence.

One or more embodiments may provide an apparatus, a
system, a machine readable storage, a machine readable
medium, and a method to receive a data stream wherein the
data stream is to include alternating transmitting intervals and
control intervals, wherein link layer flits are to be sent during
the transmitting intervals and the control intervals are to pro-
vide opportunities to send physical layer control information,
identify control data that indicates an attempted entry into a
low power state from a link transmitting state, wherein the
data stream is to be received in the link transmitting state, and
transition into the low power state.

In at least one example, the control data comprises a pre-
defined code.

In at least one example, transitioning into the low power
state includes echoing the predefined code in a subsequent
control interval.

In at least one example, transitioning into the low power
state includes receiving a supersequence indicating the tran-
sition to the low power state.

In at least one example, transitioning into the low power
state further includes echoing the supersequence.

In at least one example, the supersequence comprises one
or more instances of a sequence including an electrical
ordered set (EOS) followed by a predetermined number of
instances of a training sequence.

In at least one example, the EOS comprises an electrical
idle electrical ordered set (EIEOS).

One or more embodiments may provide an apparatus, a
system, a machine readable storage, a machine readable
medium, and a method to identify a particular instance of a
periodic control interval to be embedded in a data stream on
a serial data link during a link transmitting state, send state
transition data during the particular instance of the control
interval to a device, wherein the state transition data is to
indicate an attempt to enter a low power state, and transition
into the low power state.

10

15

20

25

30

35

40

45

50

55

60

65

40

One or more examples can further provide receiving an
acknowledgement from the device, the acknowledgement
comprising the state transition data.

In at least one example, the acknowledgement is to coin-
cide with a next periodic control interval.

In at least one example, transitioning into the low power
state includes sending a supersequence to the device indicat-
ing the transition to the low power state.

In at least one example, transitioning into the low power
state further includes receiving a repeated instance of the
supersequence from the device.

In at least one example, the supersequence comprises one
or more instances of a sequence including an electrical
ordered set (EOS) followed by a predetermined number of
instances of a training sequence.

In at least one example, the EOS comprises an electric idle
exit ordered set (EIEOS).

In at least one example, transition into the low power state
is based on a request of a power control unit.

One or more examples can further provide initiating a
transition from the low power state to the link transmitting
state.

One or more examples can further provide a physical layer
(PHY) configured to be coupled to a serial, differential link,
the PHY to periodically issue a blocking link state (BLS), the
BLS request to cause an agent to enter a BLS to hold off link
layer flit transmission for a duration, wherein the PHY is to
utilize the serial, differential link during the duration for PHY
associated tasks.

In at least one example, the PHY is to utilize the serial,
differential link during the duration for PHY associated tasks
comprises sending one or more messages of a priority mes-
sage list including a no-op, reset, in-band reset, entry into low
power state, entry into partial width state, entry into other
PHY state, etc.

One or more examples can further provide a physical layer
(PHY) configured to be coupled to a link, the link including a
first number of lanes, wherein the PHY is to transmit flits over
the first number of lanes in a full width transmitting link state,
and wherein the PHY is to transmit flits over a second number
of lanes, which is less than the first number of lanes, in a
partial-width transmitting link state.

Inatleast one example, the PHY is to utilize a blocking link
state to enter the partial-width transmitting link state from the
blocking link state.

In at least one example, the flits have the same size when
transmitting over the first number of lanes and the second
number of lanes.

In at least one example, the PHY utilizes an embedded
clock for transmitting over the first number of lanes and over
the second number of lanes.

In at least one example, the PHY utilizes an embedded
clock for transmitting over the first number of lanes and a
forwarded clock for transmitting over the second number of
lanes.

Reference throughout this specification to “one embodi-
ment” or “an embodiment” means that a particular feature,
structure, or characteristic described in connection with the
embodiment is included in at least one embodiment of the
present invention. Thus, the appearances of the phrases “in
one embodiment” or “in an embodiment” in various places
throughout this specification are not necessarily all referring
to the same embodiment. Furthermore, the particular fea-
tures, structures, or characteristics may be combined in any
suitable manner in one or more embodiments.

In the foregoing specification, a detailed description has
been given with reference to specific exemplary embodi-

US 9,208,121 B2

41

ments. It will, however, be evident that various modifications
and changes may be made thereto without departing from the
broader spirit and scope of the invention as set forth in the
appended claims. The specification and drawings are, accord-
ingly, to be regarded in an illustrative sense rather than a
restrictive sense. Furthermore, the foregoing use of embodi-
ment and other exemplarily language does not necessarily
refer to the same embodiment or the same example, but may
refer to different and distinct embodiments, as well as poten-
tially the same embodiment.

What is claimed is:

1. An apparatus comprising:

interface logic to couple to a serial, differential intercon-

nect comprising a plurality of lanes;
the interface logic to receive a clock signal and comprising
a plurality of drift buffers,

wherein the interface logic is to embed a clock in data to be
transmitted over the plurality of lanes during a first state,

the interface logic is to embed a clock in data to be trans-
mitted on a fewer number of lanes of the plurality of
lanes during a partial width state, a portion of the plu-
rality oflanes are to be idle during the partial width state,
and the interface logic is to scramble data transmitted on
the lanes with a Pseudo-Random Bit Sequence (PRBS).

2. The apparatus of claim 1, wherein the interface logic is
to transition between first state and the partial width state.

3. The apparatus of claim 2, wherein transitioning from the
partial width state to the first state comprises sending a partial
width state exit supersequence comprising one or more
instances of an electrical ordered set (EOS) and a plurality of
instances of a training sequence.

4. The apparatus of claim 3, wherein transitioning from the
partial width state to the first state further comprises trans-
mitting an initial EOS preceding the partial width state exit
supersequence.

5. The apparatus of claim 4, wherein the interface logic is
further to transmit null flits on active lanes of the plurality of
lanes when the initial EOS is to be transmitted.

6. The apparatus of claim 1, wherein the interface logic
comprises physical layer logic, link layer logic and protocol
layer logic, and wherein the protocol layer logic is to support
cache coherent transactions.

7. The apparatus of claim 1, wherein the interface logic is
to embed a clock in data comprises the interface logic to
signal the data in manner to support a receiver to continuously
adapt on a bitstream to recover a clock from the data.

8. The apparatus of claim 1, wherein the interface logic is
included in a processor coupled in one socket of a server with
at least two sockets.

9. The apparatus of claim 1, wherein interface logic is
included in a system on a chip (SoC).

10. The apparatus of claim 9, wherein the SoC is coupled to
a plurality of other SoCs in a server.

11. The apparatus of claim 9, further comprising a radio.

10

35

40

45

42

12. An apparatus comprising

a controller to interface between at least a first processor to
recognize a first instruction set and second processor to
recognize a second instruction set that is different from
the first instruction set, the controller comprising inter-
face logic to couple to a serial, differential interconnect
comprising a plurality of lanes; the interface logic to
receive a common clock and comprising a plurality of
drift buffers, wherein the interface logic is to embed a
clock in data to be transmitted over the plurality oflanes
during a first state and to scramble a plurality of flits of
the data with a Pseudo-Random Bit Sequence (PRBS);
and wherein the interface logic is to embed a clock in
data to be transmitted on a reduced number of lanes of
the plurality of lanes during a partial width state, and
some of the plurality of lanes are idle during the partial
width state.

13. The apparatus of claim 12, wherein the interface logic
is to transition between first state and the partial width state.

14. The apparatus of claim 13, wherein transitioning from
the partial width state to the first state comprises sending a
partial width state exit supersequence comprising one or
more instances of an electrical ordered set (EOS) and a plu-
rality of instances of a training sequence.

15. The apparatus of claim 12, wherein the first and the
second processor are coupled to the controller.

16. The apparatus of claim 15, wherein the first instruction
set comprises an Intel® based instruction set.

17. A non-transitory computer readable medium including
code, when executed, to cause interface logic comprising drift
buffers to:

receive a common clock;

embed a clock in data to be transmitted over the plurality of

lanes during a first state;

scramble a plurality of flits of the data to be transmitted on

the lanes with a Pseudo-Random Bit Sequence (PRBS);
and

embed a clock in data to be transmitted on a reduced

number of lanes of the plurality of lanes during a partial
width state, wherein some of the plurality of lanes are
idle during the partial width state.

18. The computer readable medium of claim 17, wherein
the code when executed is further to cause the interface logic
to transition between first state and the partial width state.

19. The computer readable medium of claim 18, wherein
transitioning from the partial width state to the first state
comprises sending a partial width state exit supersequence
comprising one or more instances of an electrical ordered set
(EOS) and a plurality of instances of a training sequence.

20. The computer readable medium of claim 19, wherein
transitioning from the partial width state to the first state
further comprises the interface logic transmitting an initial
EOS preceding the partial width state exit supersequence.

#* #* #* #* #*

